Variations of Right-Veering Open Books and Knot Positivity
右转向打开书籍和结积极性的变化
基本信息
- 批准号:2005450
- 负责人:
- 金额:$ 22.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will advance interaction of the theory of knots and links (knots with several components) and contact topology, two significant subjects in Geometry and Topology. The project will progress the study of braids (links that look like actual braids) that has numerous applications to Algebraic Geometry, Operator Algebras, Homotopy Theory, Robotics, Cryptography, Geometry and Topology. The fundamental issue the project seeks to address is using diagrams on the plane way to detect whether contact structures are tight or overtwisted. Some parts of the project will involve research by graduate students. The Kids Topology Club will engage young Iowans who have potential to contribute to the STEM research of the US. Project goals are: (1) to develop a diagrammatic method to detect tightness or overtwistedness of a given contact 3-manifold, (2) to extend the idea of (1) to knot theory (detection of non-looseness or looseness of a transverse link), (3) to compare various positivities of knots and links from braid theory and contact geometry view points, and find their geometric meanings. Main methods used are the Bennequin-Eliashberg inequality, the Giroux correspondence, Birman and Menasco’s braid foliations, and Ito and Kawamuro’s open book foliations. To approach the goals, properties of twist-left-veering mapping classes and the defects of the 3- and 4-dimensional Bennequin-Eliashberg inequalities will be investigated. Scope of the project is (1) to study relation between twist-left-veering that Ito-Kawamuro introduce and inconsistency that Wand defined, (2) to continue investigating the depth of transverse knots via twist-left-veering, and (3) to study relation between the above-mentioned defects and Heegaard-Floer and Khovanov invariants. Potential contribution is to advance the study of (1) tight contact structures that is a central subject in contact geometry and has strong connection to symplectic geometry and algebraic geometry, and (2) quasipositive knots that are important in topology and algebraic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将推进节点和链接(具有多个组件的节点)和接触拓扑理论的相互作用,这是几何和拓扑中的两个重要主题。该项目将推进辫子(看起来像实际辫子的链接)的研究,该研究在代数几何,算子代数,同伦理论,机器人学,密码学,几何学和拓扑学中有许多应用。该项目寻求解决的基本问题是使用平面图来检测接触结构是否紧密或过度扭曲。该项目的某些部分将涉及研究生的研究。儿童拓扑俱乐部将吸引年轻的爱荷华州人谁有潜力为美国的STEM研究作出贡献。项目目标是:(2)将(1)的思想推广到纽结理论(检测横链的非松弛性或松弛性);(3)从辫理论和接触几何的角度比较纽结和横链的各种正性,并找出它们的几何意义。使用的主要方法是Bennequin-Eliashberg不等式,Giroux对应,Birman和Menasco的辫子叶理,以及伊藤和川室的开卷叶理。为了达到这一目标,我们将研究扭曲左转向映射类的性质以及三维和四维Bennequin-Eliashberg不等式的缺陷。该项目的范围是(1)研究伊藤-川室介绍的扭曲左转向与Wand定义的不一致性之间的关系,(2)通过扭曲左转向继续研究横向结的深度,以及(3)研究上述缺陷与Heegaard-Floer和Khovanov不变量之间的关系。潜在的贡献是推进(1)紧接触结构的研究,紧接触结构是接触几何的中心课题,与辛几何和代数几何有很强的联系,以及(2)拓扑学和代数几何学中重要的准正结。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Agol cycles of pseudo-Anosov 3-braids
伪 Anosov 3 辫子的 Agol 循环
- DOI:10.1007/s10711-023-00812-z
- 发表时间:2023
- 期刊:
- 影响因子:0.5
- 作者:Aceves, Elaina;Kawamuro, Keiko
- 通讯作者:Kawamuro, Keiko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keiko Kawamuro其他文献
The Self-Linking Number in Planar Open Book Decompositions
平面开卷分解中的自联数
- DOI:
10.4310/mrl.2012.v19.n1.a5 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Keiko Kawamuro - 通讯作者:
Keiko Kawamuro
The defect of Bennequin-Eliashberg inequality and Bennequin surfaces
Bennequin-Eliashberg 不等式和 Bennequin 曲面的缺陷
- DOI:
10.1512/iumj.2019.68.7662 - 发表时间:
2017 - 期刊:
- 影响因子:1.1
- 作者:
Tetsuya Ito;Keiko Kawamuro - 通讯作者:
Keiko Kawamuro
Characteristic polynomials of pseudo-Anosov maps
伪阿诺索夫映射的特征多项式
- DOI:
10.2140/agt.2020.20.451 - 发表时间:
2010 - 期刊:
- 影响因子:0.7
- 作者:
J. Birman;Peter Brinkmann;Keiko Kawamuro - 通讯作者:
Keiko Kawamuro
Twist left-veering open books and overtwisted contact structures
扭转左转打开的书籍和过度扭转的接触结构
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Tetsuya Ito;Keiko Kawamuro - 通讯作者:
Keiko Kawamuro
Quasi-right-veering braids and nonloose links
准右转向辫子和非松动链接
- DOI:
10.2140/agt.2019.19.2989 - 发表时间:
2016 - 期刊:
- 影响因子:0.7
- 作者:
Tetsuya Ito;Keiko Kawamuro - 通讯作者:
Keiko Kawamuro
Keiko Kawamuro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keiko Kawamuro', 18)}}的其他基金
RTG: Geometry and Topology at Iowa
RTG:爱荷华州的几何和拓扑
- 批准号:
2038103 - 财政年份:2021
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
7th Midwest Women in Mathematics Symposium
第七届中西部女性数学研讨会
- 批准号:
1844267 - 财政年份:2019
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
相似国自然基金
中医药应对突发公共卫生事件循证指南报告规范的研制:一项基于RIGHT框架的方法学研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
- 批准号:
DE240100338 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Discovery Early Career Researcher Award
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
- 批准号:
2348177 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341512 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341513 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
Solar E-Waste in Africa: facilitating the right to repair
非洲的太阳能电子废物:促进修复权
- 批准号:
LP230100220 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Linkage Projects
The Importance of Mobilization in the Failure of the Left and the Rise of the Right
动员对于左派失败和右派崛起的重要性
- 批准号:
24K04732 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engagement and Planning for the Canadian Right Ventricular Adaptive Platform Trial
加拿大右心室自适应平台试验的参与和规划
- 批准号:
480761 - 财政年份:2023
- 资助金额:
$ 22.19万 - 项目类别:
Miscellaneous Programs
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 22.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fascism and the Far Right in the United States, 1920-1960
美国的法西斯主义和极右翼,1920 年至 1960 年
- 批准号:
2908504 - 财政年份:2023
- 资助金额:
$ 22.19万 - 项目类别:
Studentship
Simulating Plankton - getting it right in the era of Digital Twins of The Ocean
模拟浮游生物 - 在海洋数字孪生时代取得成功
- 批准号:
NE/X010783/1 - 财政年份:2023
- 资助金额:
$ 22.19万 - 项目类别:
Research Grant