From Quantum Many-Body Dynamics to Energy-Critical Nonlinear Schrodinger Equations and Back

从量子多体动力学到能量关键的非线性薛定谔方程以及返回

基本信息

  • 批准号:
    2005469
  • 负责人:
  • 金额:
    $ 21.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The project addresses the rigorous justification of mean-field limits of quantum many-body dynamics. Many-body systems arise naturally as fundamental models in physical systems. The simulation of such systems is only possible via some approximations, the so-called mean-field limits, since many-body systems can contain an enormous number of particles. The mathematical justification of mean-field limits, starting from the many-body systems they are supposed to describe, is therefore an issue of fundamental scientific importance. The investigator will address questions arising from the study of Bose-Einstein condensation (BEC), the state of matter of a diluted gas of bosons cooled to temperatures very close to absolute zero. In BEC, a large fraction of the bosons occupies the same quantum state, at which point quantum effects become apparent at the macroscopic scale. Since the first observation of BEC in 1995 by Cornell and Ketterle (who earned the Nobel Prize for their discovery), the investigation of this new state of matter has become one of the most active areas of contemporary research.The focus of this research project is to investigate several problems concerning the fine properties of solutions of the time-dependent many-body Schrödinger equation, in the limit as the particle number tends to infinity at the energy-critical level. This project encompasses three broad directions. The first direction aims to prove that the energy-critical Nonlinear Schrödinger equation is the mean-field limit of quantum many-body dynamics under the Gross-Pitaevskii scaling in the important three-dimensional quintic case. The second direction focuses on space-time regularity of solutions to the many-body Schrödinger equation with focusing interactions. The third direction turns to the study of probability aspects of discrete quantum many-body dynamics. The PI and collaborators will use techniques from harmonic analysis, probability, and spectral theory to analyze these problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了量子多体动力学平均场极限的严格证明问题。多体系统作为物理系统中的基本模型自然产生。对这类系统的模拟只能通过一些近似,即所谓的平均场极限,因为多体系统可能包含大量的粒子。因此,平均场极限的数学证明,从它们应该描述的多体系统开始,是一个具有根本科学意义的问题。这位研究人员将解决玻色-爱因斯坦凝聚(BEC)研究中出现的问题,BEC是一种被冷却到非常接近绝对零度的玻色子稀薄气体的物质状态。在BEC中,很大一部分玻色子占据相同的量子态,在这一点上,量子效应在宏观尺度上变得明显。自从1995年Cornell和Ketterle(因他们的发现而获得诺贝尔奖)首次发现BEC以来,对这种新的物质状态的研究已经成为当代研究中最活跃的领域之一。本研究的重点是研究与含时多体薛定谔方程解的精细性质有关的几个问题,当粒子数在能量临界水平趋于无穷大时,在极限情况下。这个项目包括三个大方向。第一个方向旨在证明能量临界的非线性薛定谔方程是在重要的三维五次情形下在Gross-Pitaevskii标度下量子多体动力学的平均场极限。第二个方向集中于具有聚焦相互作用的多体薛定谔方程解的时空正则性。第三个方向转向离散量子多体动力学的概率方面的研究。PI和合作者将使用调和分析、概率和频谱理论的技术来分析这些问题。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The unconditional uniqueness for the energy-supercritical NLS
能量超临界 NLS 的无条件唯一性
  • DOI:
    10.1007/s40818-022-00130-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Chen, Xuwen;Shen, Shunlin;Zhang, Zhifei
  • 通讯作者:
    Zhang, Zhifei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuwen Chen其他文献

Convergence to Equilibrium of a Body Moving in a Kinetic Sea
运动海洋中运动物体的平衡收敛
Dichloromethane as methylene donor for the one-pot synthesis of bisaryloxy methanes via Williamson etherification and Suzuki coupling
二氯甲烷作为亚甲基供体,通过 Williamson 醚化和 Suzuki 偶联一锅法合成双芳氧基甲烷
  • DOI:
    10.1016/j.tetlet.2016.10.023
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Xuwen Chen;Changfeng Hu;Jie-Ping Wan;Yunyun Liu
  • 通讯作者:
    Yunyun Liu
Classical Proofs Of Kato Type Smoothing Estimates for The Schrödinger Equation with Quadratic Potential in $\mathbb{R}^{n+1}$ with application
$mathbb{R}^{n+1}$ 中具有二次势的薛定谔方程的加藤型平滑估计的经典证明及其应用
Copper-catalyzed one-pot reactions of acetyl chloride, o-halobenzoic acids and Wittig reagents toward 3-methyl isocoumarin synthesis
铜催化乙酰氯、邻卤苯甲酸和Wittig试剂的一锅反应合成3-甲基异香豆素
  • DOI:
    10.1039/c7ra06707k
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xuwen Chen;Yunyun Liu
  • 通讯作者:
    Yunyun Liu
Methods of Harmonic Analysis Applied to Bose-Einstein Condensation
应用于玻色-爱因斯坦凝聚的调和分析方法
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuwen Chen
  • 通讯作者:
    Xuwen Chen

Xuwen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuwen Chen', 18)}}的其他基金

Mean-Field Limits of Quantum Many-Body Dynamics and Free Boundaries in Kinetic Theory
量子多体动力学的平均场极限和运动理论中的自由边界
  • 批准号:
    1464869
  • 财政年份:
    2015
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Continuing Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
  • 批准号:
    EP/Y036069/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Fellowship
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Continuing Grant
Geometric approaches to quantum many body problems
量子多体问题的几何方法
  • 批准号:
    DE230100829
  • 财政年份:
    2023
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Discovery Early Career Researcher Award
INTERACTIVE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS
多体量子系统的交互动力学
  • 批准号:
    EP/X030881/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Research Grant
Elements: Embedding Framework for Quantum Many-Body Simulations
元素:量子多体模拟的嵌入框架
  • 批准号:
    2310582
  • 财政年份:
    2023
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Dynamics of Quantum Information in Strongly Interacting Many-Body Systems
LEAPS-MPS:强相互作用多体系统中的量子信息动力学
  • 批准号:
    2317030
  • 财政年份:
    2023
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Standard Grant
Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
  • 批准号:
    2889795
  • 财政年份:
    2023
  • 资助金额:
    $ 21.05万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了