Geometry and Dynamics of K3 Surfaces
K3 曲面的几何和动力学
基本信息
- 批准号:2005470
- 负责人:
- 金额:$ 21.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of research in dynamical systems is to understand the long-term behavior of a structure that changes according to some predetermined law. The structures and the laws come from diverse fields such as physics, economics, biology, to name a few, and as a consequence dynamical systems pervade most areas of science and its applications. Among dynamical systems, area-preserving maps are both ubiquitous and poorly understood. This project investigates area-preserving maps and their geometry on a class of spaces called K3 surfaces. Such dynamical systems serve as basic models for a broad class of situations and intertwine unpredictability (chaos) with tame, predictable behavior. Systems exhibiting only unpredictability, as well as systems exhibiting only tame behavior, are by now well-studied and the goal of this project is to understand the boundary and coexistence of these two extremes.In one direction, the PI will study the dynamics in moduli spaces of K3 surfaces. Moduli spaces parametrize all possible objects of a given type and are fundamental tools in mathematics and theoretical physics. Dynamics in moduli spaces describes how the geometry of the surface changes and, consequently, leads to an understanding of the dynamics on the surface itself. Part of the research program is based on earlier developments in homogeneous and Teichmüller dynamics, following analogies between K3 and Riemann surfaces. The geometry of K3 surfaces is controlled by Ricci-flat metrics, which are solutions to Monge-Ampère partial differential equations. The PI will relate these equations to more dynamical invariants, such as Lyapunov exponents and entropy. Additionally, the PI will study non-Archimedean versions of these questions and will develop the necessary tools in non-Archimedean dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统研究的目标是了解一个结构的长期行为,该结构按照某种预定的规律变化。这些结构和定律来自不同的领域,如物理学、经济学、生物学等,因此,动力系统渗透到科学及其应用的大多数领域。在动力系统中,保面积映射既普遍存在,又鲜为人知。本项目研究一类称为K3曲面的空间上的保面积映射及其几何。这样的动力系统作为一大类情况的基本模型,并将不可预测性(混沌)与温和的、可预测的行为交织在一起。到目前为止,只表现出不可预测性的系统以及只表现出驯服行为的系统都得到了很好的研究,本项目的目标是了解这两个极端的边界和共存。在一个方向上,PI将研究K3曲面的模空间中的动力学。模空间将给定类型的所有可能对象参数化,是数学和理论物理中的基本工具。模空间中的动力学描述了曲面的几何如何变化,从而导致对曲面本身的动力学的理解。研究计划的一部分是基于齐次动力学和泰希米勒动力学的早期发展,遵循K3曲面和黎曼曲面之间的类比。K3曲面的几何由Ricci-Flat度量控制,后者是Monge-Ampère偏微分方程解。PI将把这些方程与更动态的不变量联系起来,例如李亚普诺夫指数和熵。此外,PI将研究这些问题的非阿基米德版本,并将开发非阿基米德动力学的必要工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Canonical currents and heights for K3 surfaces
- DOI:10.4310/cjm.2023.v11.n3.a2
- 发表时间:2021-03
- 期刊:
- 影响因子:1.6
- 作者:Simion Filip;Valentino Tosatti
- 通讯作者:Simion Filip;Valentino Tosatti
Kummer rigidity for K3 surface automorphisms via Ricci-flat metrics
通过 Ricci 平坦度量计算 K3 表面自同构的 Kummer 刚度
- DOI:10.1353/ajm.2021.0036
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Filip, Simion;Tosatti, Valentino
- 通讯作者:Tosatti, Valentino
Asymptotic shifting numbers in triangulated categories
三角类别中的渐近平移数
- DOI:10.1016/j.aim.2023.109163
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Fan, Yu-Wei;Filip, Simion
- 通讯作者:Filip, Simion
On pseudo-Anosov autoequivalences
关于伪阿诺索夫自等价性
- DOI:10.1016/j.aim.2021.107732
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Fan, Yu-Wei;Filip, Simion;Haiden, Fabian;Katzarkov, Ludmil;Liu, Yijia
- 通讯作者:Liu, Yijia
Geometry and dynamics on Riemann and K3 surfaces
黎曼和 K3 曲面上的几何和动力学
- DOI:10.4171/mag-4
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Filip, Simion
- 通讯作者:Filip, Simion
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simion Filip其他文献
Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle
Kontsevich-Zorich 余循环的零 Lyapunov 指数和单峰性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Simion Filip - 通讯作者:
Simion Filip
Notes on the multiplicative ergodic theorem
乘法遍历定理的注释
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Simion Filip - 通讯作者:
Simion Filip
Translation surfaces: Dynamics and Hodge theory
平移表面:动力学和霍奇理论
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.3
- 作者:
Simion Filip - 通讯作者:
Simion Filip
Families Of K3 surfaces and Lyapunov exponents
K3 曲面族和 Lyapunov 指数
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Simion Filip - 通讯作者:
Simion Filip
Counting special lagrangian fibrations in twistor families of K3 surfaces
计算 K3 表面扭量族中的特殊拉格朗日纤维
- DOI:
10.24033/asens.2432 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Simion Filip - 通讯作者:
Simion Filip
Simion Filip的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simion Filip', 18)}}的其他基金
Dynamics and Hodge theory: Uniformization and Bialgebraic Geometry
动力学和霍奇理论:均匀化和双代数几何
- 批准号:
2305394 - 财政年份:2023
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
- 批准号:
2338233 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
- 批准号:
2305735 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Fellowship Award
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 21.64万 - 项目类别:
Continuing Grant