Geometric Limits in Higher Teichmueller Theory
高等Teichmueller理论中的几何极限
基本信息
- 批准号:2005501
- 负责人:
- 金额:$ 13.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A manifold is an abstract mathematical object that in the small looks like the space we live in, but that can have different global properties in the large. A geometric structure on a manifold is a way of measuring quantities that are invariant under a certain group of symmetries, the same way distances and angles do not change under rotations or translations. In many cases, on a fixed manifold, one can consider different geometric structures with the same underlying group of symmetries. The world of possible such structures is the moduli space. One example is the classic Teichmuller space that parametrizes metrics of constant negative curvature on certain two dimensional manifolds. Higher Teichmuller theory studies more general geometric structures on more complicated manifolds and their dynamical properties. This award provides funding for the research that focuses on fundamental questions in higher Teichmuller theory: how can we describe the geometry of these objects starting from the parameters in the moduli space? In particular, can we understand how these structures degenerate when the parameters leave all compact sets in the moduli space? Some numerical experiments related to this research will be carried out as undergraduate research supervised by the PI.The PI plans to study geometric structures on low-dimensional manifolds with a rank 2 semi-simple Lie group of symmetries, such as anti-de Sitter, convex projective and Lorentzian conformally flat, using techniques from Higgs bundles, harmonic maps and representation theory. More precisely, the PI will study geometric limits of these structures when the parameters leave every compact set in the corresponding moduli spaces, with the aim of finding a (partial) compactification of these moduli spaces and give a geometric interpretation of the boundary points. A different line of research is related to a long-standing question by Gromov about existence and regularity of minimal area metrics on surfaces with a fixed systolic constraint, which he will investigate exploiting tools from convex optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流形是一种抽象的数学对象,在小范围内看起来像我们生活的空间,但在大范围内可以具有不同的全局属性。流形上的几何结构是一种测量量的方法,这些量在一定的对称组下是不变的,同样的距离和角度在旋转或平移下不会改变。在许多情况下,在固定流形上,可以考虑具有相同底层对称组的不同几何结构。可能的这种结构的世界就是模空间。一个例子是经典的Teichmuller空间,它在某些二维流形上参数化了常数负曲率的度量。高等Teichmuller理论研究更复杂流形上更一般的几何结构及其动力学性质。该奖项为研究高等Teichmuller理论中的基本问题提供了资金:我们如何从模空间的参数开始描述这些物体的几何形状?特别是,当参数在模空间中留下所有紧集时,我们能理解这些结构是如何退化的吗?与本研究相关的一些数值实验将作为本科生研究在PI的指导下进行。PI计划利用希格斯束、调和映射和表示理论的技术,研究具有2阶半简单李群对称的低维流形上的几何结构,如反德西特、凸投影和洛伦兹共形平面。更准确地说,PI将研究这些结构的几何极限,当参数离开相应模空间中的每个紧化集时,目的是找到这些模空间的(部分)紧化,并给出边界点的几何解释。另一项研究与Gromov关于具有固定收缩约束的表面上最小面积度量的存在性和规律性的长期问题有关,他将利用凸优化工具来研究这个问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Tamburelli其他文献
Planar minimal surfaces with polynomial growth in the $\mathrm{Sp}(4, \mathbb{R})$-symmetric space
$mathrm{Sp}(4, mathbb{R})$对称空间中具有多项式增长的平面极小曲面
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Andrea Tamburelli;Michael Wolf - 通讯作者:
Michael Wolf
Riemannian metrics on the moduli space of GHMC anti-de Sitter structures
GHMC 反德西特结构模空间的黎曼度量
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.5
- 作者:
Andrea Tamburelli - 通讯作者:
Andrea Tamburelli
Fenchel–Nielsen coordinates on the augmented moduli space of anti-de Sitter structures
- DOI:
10.1007/s00209-020-02562-0 - 发表时间:
2020-06-30 - 期刊:
- 影响因子:1.000
- 作者:
Andrea Tamburelli - 通讯作者:
Andrea Tamburelli
Prescribing Metrics on the Boundary of Anti-de Sitter 3-Manifolds
规定反德西特 3 流形边界的度量
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Andrea Tamburelli - 通讯作者:
Andrea Tamburelli
On the volume of Anti-de Sitter maximal globally hyperbolic three-manifolds
- DOI:
10.1007/s00039-017-0423-x - 发表时间:
2017-09-04 - 期刊:
- 影响因子:2.500
- 作者:
Francesco Bonsante;Andrea Seppi;Andrea Tamburelli - 通讯作者:
Andrea Tamburelli
Andrea Tamburelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Research Grant














{{item.name}}会员




