Geometry and Randomness: Counting, Partitions, Stochastics, Shape

几何和随机性:计数、分区、随机、形状

基本信息

  • 批准号:
    2005512
  • 负责人:
  • 金额:
    $ 19.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project supports a research program that bridges mathematics to data science. The techniques developed in this project center on randomized constructions that illuminate geometry at large scale, and which can be useful in the study of networks. Example applications include epidemiology, social networks, and geospatial networks. Many ideas for these applications can be mined from the study of infinite groups; however, most of the technology developed in geometric group theory is asymptotic, and requires passing to an infinite limit. In practical applications, it is essential to have medium-scale techniques that are neither infinitesimal nor asymptotic.This research project will focus on 4 areas, (1) Counting and statistical geometry: methods for studying the precise geometry of geodesics open up applications like rational growth, statistical hyperbolicity, and macro Ricci curvature. (2) Nilpotent geometry: nilpotent groups such as the 3D Heisenberg group are of central interest in geometric analysis, Lie theory, and even the part of control theory that centers on sub-Riemannian geometry. In the 1980s, they also opened up a new vista on geometric group theory, through Gromov's remarkable polynomial growth theorem, which is still being explored for insights. New directions of inquiry explored here bring the geometric analysis together with the combinatorial group theory. (3) Teichmuller geometry and billiards: From the geometry of random triangles to rigidity theorems in symbolic dynamics, the proposal describes an active research program built from an interplay of flat and hyperbolic geometry. (4) Markov chains on graph partitions: How can we efficiently sample from the balanced, connected k-partitions of a graph? And how about preferentially sampling from partitions with a short boundary? This is a question of fundamental interest across many application domains, and it lends itself well to exploration on large datasets. The PI and his/her collaborators have implemented a recombination ("ReCom") Markov chain and research program for understanding its dynamics and geometry. This provides a rich application for ideas from ergodic theory, isoperimetry, and combinatorial models for moduli space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目支持一个将数学与数据科学联系起来的研究项目。 该项目开发的技术集中在随机结构上,这些结构在大规模上照亮了几何形状,并且在网络研究中非常有用。示例应用包括流行病学、社交网络和地理空间网络。 这些应用的许多想法可以从无限群的研究中挖掘出来;然而,几何群论中开发的大多数技术都是渐近的,并且需要传递到无限极限。 在实际应用中,必须有既不是无穷小也不是渐近的中等尺度技术。本研究计划将集中在4个领域:(1)计数和统计几何:研究测地线的精确几何的方法开辟了合理增长,统计双曲和宏观Ricci曲率等应用。 (2)幂零几何:幂零群,如3D海森堡群,是几何分析、李理论,甚至是以次黎曼几何为中心的控制理论的核心。在20世纪80年代,他们还开辟了一个新的前景几何群论,通过格罗莫夫的显着多项式增长定理,这仍然是探索的见解。探索新的方向在这里带来了几何分析与组合群论。 (3)Teichmuller几何和台球:从随机三角形的几何到符号动力学中的刚性定理,该提案描述了一个由平面和双曲几何相互作用建立的积极研究计划。 (4)图分区上的马尔可夫链:我们如何有效地从图的平衡,连通的k分区中采样?优先从具有短边界的分区中采样怎么样?这是一个跨许多应用领域的基本兴趣问题,它很适合在大型数据集上进行探索。PI和他/她的合作者已经实施了一个重组(“ReCom”)马尔可夫链和研究计划,以了解其动力学和几何形状。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stars at infinity in Teichmüller space
泰希米勒空间中无限远的星星
  • DOI:
    10.1007/s10711-021-00596-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Duchin, Moon;Fisher, Nate
  • 通讯作者:
    Fisher, Nate
The (homological) persistence of gerrymandering
不公正选区的(同源)持续存在
  • DOI:
    10.3934/fods.2021007
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Duchin, Moon;Needham, Tom;Weighill, Thomas
  • 通讯作者:
    Weighill, Thomas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moon Duchin其他文献

The geometry of spheres in free abelian groups
  • DOI:
    10.1007/s10711-012-9700-x
  • 发表时间:
    2012-02-28
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Moon Duchin;Samuel Lelièvre;Christopher Mooney
  • 通讯作者:
    Christopher Mooney

Moon Duchin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moon Duchin', 18)}}的其他基金

RAPID: Campus Coronavirus Response
RAPID:校园冠状病毒应对
  • 批准号:
    2029788
  • 财政年份:
    2020
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Network Science of Census Data
融合加速器第一阶段(RAISE):人口普查数据的网络科学
  • 批准号:
    1937095
  • 财政年份:
    2019
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
CAREER: Finer Coarse Geometry
职业:更精细、更粗略的几何形状
  • 批准号:
    1255442
  • 财政年份:
    2013
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Continuing Grant
Finer Coarse Geometry
更精细的粗略几何形状
  • 批准号:
    1207106
  • 财政年份:
    2012
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Canada/USA Mathcamp: Research in Pairs and Scholarships for Students
加拿大/美国数学营:结对研究和学生奖学金
  • 批准号:
    1242617
  • 财政年份:
    2012
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Young Geometric Group Theory Meeting
青年几何群理论会议
  • 批准号:
    1145620
  • 财政年份:
    2011
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Metric Geometry of Groups and Surfaces
群和曲面的度量几何
  • 批准号:
    0906086
  • 财政年份:
    2009
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Interplay between geometry and randomness in fitness landscapes for expanding populations
人口增长的健身景观中几何与随机性之间的相互作用
  • 批准号:
    EP/X040089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
  • 批准号:
    22KJ1845
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
AF: Small: The Power of Randomness in Decision and Verification
AF:小:决策和验证中随机性的力量
  • 批准号:
    2312540
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Randomness in High-Dimensional Combinatorics: Colorings, Robustness, and Statistics
高维组合中的随机性:着色、鲁棒性和统计
  • 批准号:
    2247078
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Continuing Grant
Robust Quantum Randomness for Industry
工业领域强大的量子随机性
  • 批准号:
    10041956
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Collaborative R&D
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
  • 批准号:
    2302988
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
Taming the randomness of random lasers with reconfigurable active particle assemblies
利用可重构的活性粒子组件来驯服随机激光器的随机性
  • 批准号:
    2303189
  • 财政年份:
    2023
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
ASCENT: TUNA: TUnable randomness for NAtural computing
ASCENT:TUNA:TU 无法实现自然计算的随机性
  • 批准号:
    2230963
  • 财政年份:
    2022
  • 资助金额:
    $ 19.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了