Category II: Unlocking Interactive AI Development for Rapidly Evolving Research

第二类:为快速发展的研究解锁交互式人工智能开发

基本信息

  • 批准号:
    2005597
  • 负责人:
  • 金额:
    $ 500万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

High-accuracy artificial intelligence (AI) has repeatedly delivered great benefit across science and engineering. AI enables information extraction and analysis of large datasets and the creation of high-fidelity models that can augment or replace more computationally expensive calculations in traditional simulation codes. In this way, AI can accelerate time-to-science by orders of magnitude. To reap these benefits, highly complex AI models must first be trained. Training is a computation-intensive process that takes days, weeks, or even months, requires optimization of both the network architecture and its hyperparameters, and limits the scope and complexity of challenges addressed. What if training time could be reduced to the point of being interactive, taking only minutes or hours even in the more extreme cases? The result would be transformative: scientists and engineers could rapidly develop and refine their ideas, enabling them to achieve high-impact solutions to the most pressing and complex issues.To help advance knowledge by enabling unprecedented AI speed and scalability, the Pittsburgh Supercomputing Center (PSC), a joint research center of Carnegie Mellon University and the University of Pittsburgh, in partnership with Cerebras Systems and Hewlett Packard Enterprise (HPE), will deploy Neocortex, an innovative computing resource that will accelerate scientific discovery by vastly shortening the time required for deep learning training/inference, foster greater integration of deep AI models with scientific workflows, and provide revolutionary innovative hardware for the development of more efficient algorithms for artificial intelligence and graph analytics. Neocortex will advance knowledge by accelerating scientific research, enabling development of more accurate models and use of larger training data, scaling model parallelism to unprecedented levels, focusing on human productivity by simplifying tuning and hyperparameter optimization, and providing a revolutionary hardware platform for the exploration of new frontiers.Neocortex will introduce the most powerful AI processor to the NSF cyberinfrastructure ecosystem and will democratize access to game-changing compute power, otherwise only available to tech giants, for students, postdocs, faculty, and others, who require faster training turnaround to analyze data and integrate AI with simulation. It will provide a unique opportunity to explore the potential of a groundbreaking new AI hardware architecture, tapping into the revolutionary AI processor technology of the Cerebras CS-1 AI platform and the large in-memory scale up capabilities of HPE Superdome Flex to unlock new insights and accelerate time to discovery. The Neocortex project will additionally focus on building a strong community around these revolutionary capabilities, including collaborations with other leading national institutions and emphasizing inclusion and diversity. It will build STEM talent through training and internships, develop the U.S. workforce and national competitiveness through industrial outreach, and foster international collaborations. Public outreach and XSEDE campus champion and domain champion activities will help engage a wider audience.The novel Neocortex architecture will couple two exceptionally powerful Cerebras CS-1 AI servers with an exceptionally large shared memory HPE Superdome Flex HPC server to achieve unprecedented AI scalability with excellent system balance. Each Cerebras CS-1 is powered by one Cerebras Wafer Scale Engine (WSE) processor, a revolutionary high-performance processor designed specifically to accelerate deep learning training and inferencing. The Cerebras WSE is the largest chip ever built, containing 400,000 AI-optimized cores implemented on a 46,225 square millimeter wafer with 1.2 trillion transistors. An on-chip fabric provides 100Pb/s of bandwidth through a fully configurable 2D mesh with no software overhead. The Cerebras WSE includes 18GB of SRAM accessible within a single clock cycle at 9PB/s bandwidth. The Cerebras WSE is uniquely engineered to enable efficient sparse computation, wasting neither time nor power multiplying the many zeroes that occur in deep networks. The Cerebras CS-1 software can be programmed with common ML frameworks such as TensorFlow and PyTorch, which for computational efficiency are mapped onto an optimized graph representation and a set of model-specific computation kernels. It also supports native code development. Support for the most popular deep learning frameworks and automatic, transparent acceleration will provide researchers with exceptional ease of use.The HPE Superdome Flex HPC server of Neocortex will be an extremely powerful, user-friendly front end for the Cerebras CS-1 servers. This will enable flexible pre- and post-processing of data flowing in and out of the attached WSEs, preventing bottlenecks to taking full advantage of the WSE capability, and implementing advanced deep learning functions such as augmentation, hyper-parameter and model optimization, and ensemble learning. The Superdome Flex will be robustly provisioned with 24TB of RAM, 204.8TB of high-performance NVMe flash storage, 32 Intel Xeon CPUs, and 24 100GbE network interface cards to create the greatest flexibility for scaling applications across multiple CS-1 systems. Internally, the HPE Superdome Flex is interconnected by a custom memory fabric ASIC for cache-coherent hardware shared memory sustaining 850GB/s of interconnect bandwidth. Its large and fast memory and high compute performance will enable training on very large datasets with exceptional ease, avoiding the laborious task of splitting and trying to load-balance datasets across worker nodes.Each Cerebras CS-1 has 1.2Tbps I/O, and will connect to the HPE Superdome Flex via twelve, standard 100GbE links. This configuration will deliver the greatest possible performance and flexibility, including, via PSC-Cerebras and PSC-HPE research partnerships, exploration of scaling training to multiple CS-1 systems.Neocortex will be federated via 16 InfiniBand HDR100 connections (an aggregate 1.6Tbps) with Bridges-2, an NSF-supported capacity resource. This federation will yield great benefits to the user community including access to the Bridges-2 filesystem to manage persistent data; general-purpose computing for data preprocessing and traditional machine learning; interoperation with data-intensive projects using Bridges-2; and high-bandwidth external network connectivity to other XSEDE Service Providers, campus, labs, and clouds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning Benchmark Studies on an Advanced AI Engineering Testbed from the Open Compass Project
开放罗盘项目的高级人工智能工程测试平台的深度学习基准研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paola Buitrago其他文献

Paola Buitrago的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paola Buitrago', 18)}}的其他基金

Collaborative Research: CyberTraining: Pilot: Building a strong community of computational researchers empowered in the use of novel cutting-edge technologies
协作研究:网络培训:试点:建立一个强大的计算研究人员社区,有权使用新颖的尖端技术
  • 批准号:
    2320991
  • 财政年份:
    2023
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
Open Compass: Leveraging the Compass AI Engineering Testbed to Accelerate Open Research
开放指南针:利用指南针人工智能工程测试床加速开放研究
  • 批准号:
    1833317
  • 财政年份:
    2018
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant

相似国自然基金

药用植物华泽兰中改善II型糖尿病并发抑郁症活性先导化合物的挖掘及其作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脂肪干细胞外泌体调节Bax/BAK1-caspase-3/caspase8信号轴影响II型肺泡上皮细胞衰老在脓毒症肺损伤中的作用及机制
  • 批准号:
    MS25H010004
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
超长波长NIR-II 区有机探针的开发及在活体检测中的应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
αvβ3整合素靶向有机探针用于NIR-II FL/MRI双模态成像引导的三阴性乳腺癌光热治疗研究
  • 批准号:
    2025JJ81013
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
  • 批准号:
    2025JJ50094
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
1 类新药研发后补助(治疗用生物制品 1 类 MG-K10 人源化单抗注射液、II 期临床试验)
  • 批准号:
    2025JK2095
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
1 类新药研发后补助(治疗用生物制品 1 类MG-ZG122 人源化单抗注射液、II 期临床试验)
  • 批准号:
    2025JK2097
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
黏土矿物结构Fe(II)跨界面驱动氧化铁结合态有机质释放和转化机制
  • 批准号:
    2025JJ50205
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
有序组装型NIR-II荧光探针的构建及疾病辅助诊断应用
  • 批准号:
    2025JJ40014
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
NIR-II荧光内镜辅助胰腺癌术中肿瘤活性评估的可视化研究
  • 批准号:
    2025JJ50653
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X006484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Research Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
  • 批准号:
    2333306
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
  • 批准号:
    2335175
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
  • 批准号:
    2335265
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: FlashPCB Service Commercialization and AI Component Package Identification
SBIR第二阶段:FlashPCB服务商业化和AI组件封装识别
  • 批准号:
    2335464
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
  • 批准号:
    2331724
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: A mesh-free, sling-free, minimally invasive treatment for stress urinary incontinence in women
SBIR II 期:无网、无吊带的微创治疗女性压力性尿失禁
  • 批准号:
    2233106
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Cooperative Agreement
テーラーメード分子設計を利用したNIR-II有機色素の創製と分子機能開発
使用定制分子设计创建和开发 NIR-II 有机染料
  • 批准号:
    24KJ2124
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了