Multiscale Methods in Quantitative Geometry
定量几何中的多尺度方法
基本信息
- 批准号:2005609
- 负责人:
- 金额:$ 33.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF award provides funding for a project to develop new methods for working with objects with complicated geometry at many different scales. Coastlines, clouds, and leaves are examples of such objects that occur in nature. The famous coastline paradox states that since a coastline is so rough at so many different scales, it has no defined length. The PI plans to develop and study new methods to build such multiscale objects and to break them down into easily handled pieces. New ways to decompose objects often lead to great advances in mathematics, where simple problems can have complicated, multiscale solutions. The project’s three-prong approach includes studying ways to break down complex objects, build complex objects out of simple pieces, and to measure multiscale complexity. In addition to the research, the PI will train graduate students and postdocs in the techniques developed by this project through advising, seminars, minicourses, and reading groups and disseminate material on his webpage for public access.The project aims to study problems in metric geometry, geometric measure theory, and harmonic analysis related to maps and surfaces with multiscale structure, that is, objects like Lipschitz and Holder maps or fractals, that are hard to approximate by affine maps or by planes. One focus is the study of geometric problems that have non-smooth solutions but no smooth solutions, such as the Nash Embedding Theorem. Solutions to these problems often use multiscale or self-similar structure to break rules that smooth maps have to satisfy, and one aim of this project is to understand when and why this phenomenon occurs. Another focus is quantitative and uniform rectifiability. Uniform rectifiability has been a powerful tool for studying singular integrals and geometric measure theory in Euclidean space. Recent work has made it possible to find sharp bounds on the quantitative rectifiability of surfaces in the Heisenberg group, and this project will explore the possibility of extending notions of uniform rectifiability to the Heisenberg group and using them to solve problems in the geometry of Euclidean space and the Heisenberg group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF奖为一个项目提供了资金,该项目旨在开发在许多不同尺度上处理复杂几何物体的新方法。海岸线、云彩和树叶都是自然界中出现的物体。著名的海岸线悖论指出,由于海岸线在许多不同的尺度上都很粗糙,所以它没有确定的长度。PI计划开发和研究制造这种多尺度物体的新方法,并将它们分解成易于处理的碎片。分解对象的新方法通常会带来数学上的巨大进步,简单的问题可以有复杂的、多尺度的解决方案。该项目的三管齐下的方法包括研究分解复杂物体的方法,用简单的碎片构建复杂物体的方法,以及测量多尺度复杂性的方法。除了研究之外,PI还将通过咨询、研讨会、迷你课程和阅读小组等方式,对研究生和博士后进行该项目的技术培训,并在其网页上发布资料,供公众查阅。该项目旨在研究与多尺度结构的地图和曲面相关的度量几何、几何测量理论和谐波分析问题,即像Lipschitz和Holder地图或分形这样难以用仿射映射或平面近似的对象。一个重点是研究具有非光滑解但没有光滑解的几何问题,如纳什嵌入定理。这些问题的解决方案通常使用多比例尺或自相似结构来打破光滑地图必须满足的规则,这个项目的一个目的是了解这种现象何时以及为什么会发生。另一个重点是定量和统一的可纠正性。一致可整直性是研究欧几里德空间奇异积分和几何测度理论的有力工具。最近的工作已经使得在海森堡群中找到表面的定量可矫正性的明确界限成为可能,本项目将探索将均匀可矫正性的概念扩展到海森堡群的可能性,并利用它们来解决欧几里得空间和海森堡群中的几何问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Area-minimizing ruled graphs and the Bernstein problem in the Heisenberg group
- DOI:10.1007/s00526-022-02264-x
- 发表时间:2022-08-01
- 期刊:
- 影响因子:2.1
- 作者:Young, Robert
- 通讯作者:Young, Robert
Harmonic intrinsic graphs in the Heisenberg group
- DOI:10.2422/2036-2145.202105_054
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Robert Young
- 通讯作者:Robert Young
Undistorted fillings in subsets of metric spaces
度量空间子集中的不失真填充
- DOI:10.1016/j.aim.2023.109024
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Basso, Giuliano;Wenger, Stefan;Young, Robert
- 通讯作者:Young, Robert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Young其他文献
選択的Rhoキナーゼ阻害剤の角膜実質創傷治癒への影響
选择性Rho激酶抑制剂对角膜基质伤口愈合的影响
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
山本真弓;奥村直毅;上野盛夫;坂本雄二;木下茂;Robert Young;Andrew Quantock;小泉範子 - 通讯作者:
小泉範子
Radiofrequency ice dielectric measurements at Summit Station, Greenland
格陵兰峰会站的射频冰介电测量
- DOI:
10.1017/jog.2023.72 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Juan Antonio Aguilar;P. Allison;D. Besson;A. Bishop;O. Botner;S. Bouma;S. Buitink;M. Cataldo;B. Clark;K. Couberly;Z. Curtis;P. Dasgupta;S. de Kockere;Krijn de Vries;C. Deaconu;M. DuVernois;A. Eimer;C. Glaser;A. Hallgren;S. Hallmann;J. Hanson;B. Hendricks;J. Henrichs;N. Heyer;C. Hornhuber;Kaeli Hughes;T. Karg;A. Karle;J. Kelley;M. Korntheuer;Marek Kowalski;I. Kravchenko;R. Krebs;R. Lahmann;U. Latif;J. Mammo;M. Marsee;Z. Meyers;K. Michaels;K. Mulrey;M. Muzio;A. Nelles;A. Novikov;A. Nozdrina;E. Oberla;B. Oeyen;I. Plaisier;N. Punsuebsay;L. Pyras;D. Ryckbosch;O. Scholten;D. Seckel;M. Seikh;Daniel Smith;J. Stoffels;D. Southall;K. Terveer;Simona Toscano;D. Tosi;D. J. Van Den Broeck;N. van Eijndhoven;A. Vieregg;J. Vischer;C. Welling;Dawn R. Williams;S. Wissel;Robert Young;Adrian Zink - 通讯作者:
Adrian Zink
High-Dimensional Fillings in Heisenberg Groups
- DOI:
10.1007/s12220-015-9601-y - 发表时间:
2015-03-20 - 期刊:
- 影响因子:1.500
- 作者:
Robert Young - 通讯作者:
Robert Young
Ergodic maps and the cohomology of nilpotent Lie groups
- DOI:
10.1007/s00208-025-03208-4 - 发表时间:
2025-07-30 - 期刊:
- 影响因子:1.400
- 作者:
Gioacchino Antonelli;Robert Young - 通讯作者:
Robert Young
1112 Embryonal Carcinoma of the Ovary: A Common Component of Malignant Mixed Germ Cell Tumors but Almost Never a Pure Primary Ovarian Tumor
1112 卵巢胚胎癌:恶性混合生殖细胞肿瘤的常见成分,但几乎从不作为单纯原发性卵巢肿瘤。
- DOI:
10.1016/j.labinv.2024.103346 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.200
- 作者:
Valentina Zanfagnin;Esther Oliva;Robert Young - 通讯作者:
Robert Young
Robert Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Young', 18)}}的其他基金
HCC: Small: Collaborative Research: Integrating Cognitive and Computational Models of Narrative
HCC:小型:协作研究:整合叙事的认知和计算模型
- 批准号:
1654651 - 财政年份:2016
- 资助金额:
$ 33.69万 - 项目类别:
Continuing Grant
Asymptotic and quantitative geometry of groups and spaces
群和空间的渐近和定量几何
- 批准号:
1612061 - 财政年份:2016
- 资助金额:
$ 33.69万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Characterizing pyrogenic soil organic matter as a source of nitrogenous disinfection byproducts
UNS:合作研究:表征热解土壤有机物作为含氮消毒副产物的来源
- 批准号:
1512670 - 财政年份:2016
- 资助金额:
$ 33.69万 - 项目类别:
Standard Grant
HCC: Small: Collaborative Research: Integrating Cognitive and Computational Models of Narrative
HCC:小型:协作研究:整合叙事的认知和计算模型
- 批准号:
1319912 - 财政年份:2013
- 资助金额:
$ 33.69万 - 项目类别:
Continuing Grant
HCC: Small: Plan-Based Models of Narrative Structure for Virtual Environments
HCC:小型:虚拟环境中基于计划的叙事结构模型
- 批准号:
0915598 - 财政年份:2009
- 资助金额:
$ 33.69万 - 项目类别:
Standard Grant
SAMULET Project 5: Processing Advanced Materials (Resubmission)
SAMULET 项目 5:加工先进材料(重新提交)
- 批准号:
EP/H00131X/1 - 财政年份:2009
- 资助金额:
$ 33.69万 - 项目类别:
Research Grant
Mathematics Instruction using Decision Science and Engineering Tools
使用决策科学和工程工具进行数学教学
- 批准号:
0733137 - 财政年份:2007
- 资助金额:
$ 33.69万 - 项目类别:
Continuing Grant
The Elwha Science Education Project (ESEP): Increasing the Representation in the Geosciences by Native American Youth Through Participation in Environmental Restoration Projects
Elwha 科学教育项目 (ESEP):通过参与环境恢复项目提高美国原住民青年在地球科学领域的代表性
- 批准号:
0703676 - 财政年份:2007
- 资助金额:
$ 33.69万 - 项目类别:
Continuing Grant
Elwha Education Project : Increasing the Relevancy of Geosciences for Native American Youth Through Participation in Environmental Restoration Projects on Tribal Lands (Track 1)
Elwha 教育项目:通过参与部落土地环境恢复项目提高地球科学对美国原住民青年的相关性(轨道 1)
- 批准号:
0503473 - 财政年份:2005
- 资助金额:
$ 33.69万 - 项目类别:
Continuing Grant
Creating Effective Task Descriptions from Action Plans
根据行动计划创建有效的任务描述
- 批准号:
0414722 - 财政年份:2004
- 资助金额:
$ 33.69万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantitative Research on the Utilization of Various Project Delivery Methods in Public Building Projects
公共建筑项目中各种项目交付方式运用的定量研究
- 批准号:
23K13480 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of Molecular Mechanisms of Child Abuse Stress Focusing on DNA Methylation and Development and Application of Quantitative Methods
以DNA甲基化为重点的儿童虐待应激分子机制阐明及定量方法的发展与应用
- 批准号:
23K16378 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biostatistics and Quantitative Methods Shared Resource
生物统计学和定量方法共享资源
- 批准号:
10911641 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Development of data generation and analysis methods for quantitative evaluation of visual search behavior in soccer
开发用于定量评估足球视觉搜索行为的数据生成和分析方法
- 批准号:
23K10626 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Core: Biostatistics and Quantitative Methods Shared Resource
核心:生物统计学和定量方法共享资源
- 批准号:
10911637 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Quantitative Research Methods for STEM Education Scholars Program
STEM 教育学者计划的定量研究方法
- 批准号:
2225362 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别:
Standard Grant
Development of quantitative analysis methods to accelerate the optimisation of fragment hits to lead compounds using NMR spectroscopy
开发定量分析方法,利用核磁共振波谱加速先导化合物片段命中的优化
- 批准号:
2726305 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别:
Studentship
Methods for ultrasensitive and quantitative multimodal molecular imaging of vascular inflammation
血管炎症超灵敏定量多模态分子成像方法
- 批准号:
RGPIN-2021-04046 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别:
Discovery Grants Program - Individual
Structural steel project development integrating structural design and construction engineering: quantitative methods and AI-based tools
结构设计与施工工程相结合的钢结构项目开发:定量方法和基于人工智能的工具
- 批准号:
579062-2022 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别:
Alliance Grants
Methods for Quantitative Neuroimaging of Tau Burden inPre-symptomatic AD
症状前 AD 中 Tau 负载的定量神经影像学方法
- 批准号:
10390919 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别: