CAREER: Advances in Graph Learning and Inference

职业:图学习和推理的进展

基本信息

  • 批准号:
    2005804
  • 负责人:
  • 金额:
    $ 36.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-11-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Graph-based data processing algorithms impact a variety of application domains ranging from transportation networks, artificial intelligence systems, cellphone networks, social networks, and the Web. Nevertheless, the emergent big-data era poses key conceptual challenges: several existing graph-based methods used in practice exhibit unreasonably high running time; several other methods operate in the absence of correctness guarantees. These challenges severely imperil the safety and reliability of higher-level decision-making systems of which they are a part. This research introduces an innovative new computational framework for graph learning and inference that addresses these challenges. Specific applications studied in this project include: better approaches for monitoring roadway congestion and identify traffic incidents in a timely manner; root-cause analysis of complex events in social networks; and design of better personalized learning systems, lowering educational costs and increasing quality nationwide. Activities include integrated programs to increase participation of women and under-represented minorities in the computational sciences. From a technical standpoint, the investigator pursues three research themes: (i) designing scalable non-convex algorithms for learning the edges (and weights) of an unknown graph given a sequence of independent static and/or time-varying local measurements; (ii) designing new approximation algorithms for utilizing the structure of a given graph to enable scalable post-hoc decision making in complex systems; (iii) developing provable algorithms for training special families of artificial neural networks, and filling gaps between rigorous theory and practice of neural network learning. Progress in each of the above themes will be extensively evaluated using real-world data from engineering applications including social network data, highway monitoring data, and fluid-flow simulation data. Collaborations with domain experts in each of these application areas will ensure that the new theory, tools, and software emerging from this project will lead to meaningful societal benefits.
基于图的数据处理算法影响各种应用领域,从交通网络、人工智能系统、手机网络、社交网络和Web。然而,新兴的大数据时代带来了关键的概念挑战:实践中使用的几种现有的基于图的方法表现出不合理的高运行时间;其他几种方法在缺乏正确性保证的情况下运行。这些挑战严重威胁到它们所属的高层决策系统的安全性和可靠性。这项研究为图学习和推理引入了一个创新的新计算框架,以解决这些挑战。该项目研究的具体应用包括:更好地监测道路拥堵和及时识别交通事故的方法;对社交网络中复杂事件的根本原因分析;以及设计更好的个性化学习系统,降低全国范围内的教育成本并提高质量。活动包括综合方案,以提高妇女和代表性不足的少数民族在计算科学的参与。从技术的角度来看,研究者追求三个研究主题:(i)设计可扩展的非凸学习算法的边缘(ii)设计新的近似算法,用于利用给定图的结构来实现复杂系统中的可扩展事后决策;(iii)发展可证明的算法,以训练特殊的人工神经网络族,并填补神经网络学习的严格理论与实践之间的空白。上述各主题的进展将使用来自工程应用的真实世界数据进行广泛评估,包括社交网络数据,高速公路监测数据和流体流动模拟数据。与每个应用领域的领域专家合作将确保该项目产生的新理论,工具和软件将带来有意义的社会效益。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Benefits of Jointly Training Autoencoders: An Improved Neural Tangent Kernel Analysis
  • DOI:
    10.1109/tit.2021.3065212
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    THANH VAN NGUYEN;Raymond K. W. Wong;C. Hegde
  • 通讯作者:
    THANH VAN NGUYEN;Raymond K. W. Wong;C. Hegde
MDPGT: Momentum-based Decentralized Policy Gradient Tracking
MDPGT:基于动量的去中心化政策梯度跟踪
InvNet: Encoding Geometric and Statistical Invariances in Deep Generative Models
  • DOI:
    10.1609/aaai.v34i04.5863
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ameya Joshi;Minsu Cho;Viraj Shah;B. Pokuri;S. Sarkar;B. Ganapathysubramanian;C. Hegde
  • 通讯作者:
    Ameya Joshi;Minsu Cho;Viraj Shah;B. Pokuri;S. Sarkar;B. Ganapathysubramanian;C. Hegde
Fast and Provable Algorithms for Learning Two-Layer Polynomial Neural Networks
用于学习两层多项式神经网络的快速且可证明的算法
Implicit Sparse Regularization: The Impact of Depth and Early Stopping
  • DOI:
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiangyuan Li;Thanh V. Nguyen;C. Hegde;R. K. Wong
  • 通讯作者:
    Jiangyuan Li;Thanh V. Nguyen;C. Hegde;R. K. Wong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chinmay Hegde其他文献

Towards Foundational AI Models for Additive Manufacturing: Language Models for G-Code Debugging, Manipulation, and Comprehension
迈向增材制造的基础 AI 模型:用于 G 代码调试、操作和理解的语言模型
  • DOI:
    10.48550/arxiv.2309.02465
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anushrut Jignasu;Kelly O. Marshall;B. Ganapathysubramanian;Aditya Balu;Chinmay Hegde;A. Krishnamurthy
  • 通讯作者:
    A. Krishnamurthy
Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
Arboretum:一个大型多模式数据集,支持人工智能促进生物多样性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chih;Ben Feuer;Zaki Jubery;Zi K. Deng;Andre Nakkab;Md Zahid Hasan;Shivani Chiranjeevi;Kelly O. Marshall;Nirmal Baishnab;Asheesh K. Singh;Arti Singh;Soumik Sarkar;Nirav C. Merchant;Chinmay Hegde;B. Ganapathysubramanian
  • 通讯作者:
    B. Ganapathysubramanian

Chinmay Hegde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chinmay Hegde', 18)}}的其他基金

EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: An Incident-Response Approach for Empowering Fact-Checkers
协作研究:SaTC:核心:媒介:增强事实检查人员能力的事件响应方法
  • 批准号:
    2154119
  • 财政年份:
    2022
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
CAREER: Advances in Graph Learning and Inference
职业:图学习和推理的进展
  • 批准号:
    1750920
  • 财政年份:
    2018
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
CRII: CIF: Towards Linear-Time Computation of Structured Data Representations
CRII:CIF:走向结构化数据表示的线性时间计算
  • 批准号:
    1566281
  • 财政年份:
    2016
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
  • 批准号:
    2340176
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了