Probabilistic Approach to Rough PDEs: Applications to Finance and Control

粗偏微分方程的概率方法:在金融和控制中的应用

基本信息

  • 批准号:
    2005832
  • 负责人:
  • 金额:
    $ 29.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This research project concerns the mathematical theory of optimal decision making under uncertainty. A particular focus will be put on problems arising in quantitative finance, where a classical issue is to maximize an investor’s future gain or to minimize their future risk. We will further develop the probabilistic theory underpinning the modeling and investigation of such problems. A particular focus will be put on situations where, in addition to randomness, models have to reflect some particular discontinuities that can occur in the system. One example is that of optimal investment in a company subject to possible bankruptcy proceedings or, more generally, subject to possible drastic changes. In addition to developing the mathematical theory, we also aim to further the understanding of the numerical computation of such systems so that the outcomes of the project will directly benefit the financial engineering and academic communities. Moreover, the proposed research activity will include mentorship of undergraduate as well as graduate students, and scientific dissemination through presentations and publications in scientific journals. It is well-known that the value and optimal strategies of many optimal stochastic control problems can be characterized by (forward) backward stochastic differential equations. However, the rather strong regularity conditions imposed on coefficient of these equations for their well-posedness severely restrict the realm of control problems that can be tackled with these probabilistic methods. The goal of this project is, in the first part, to develop a set of new ideas that can be used to study well-posedness and regularity of solutions of backward stochastic differential equations with rough coefficients and the associated second order partial differential equations. The main approach we envision will make ample use of strong compactness criteria from the theory of Malliavin calculus. Then, we will consider a number of applications, including application to rough partial differential equations, quantitative finance (portfolio optimization problems) and optimal transport. Putting our theoretical results together with newly developed deep learning approaches to the approximation of backward stochastic differential equations will further allow to numerically simulate the solutions constructed in some of the application areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目涉及不确定条件下最优决策的数学理论。将特别关注量化金融中出现的问题,其中一个经典问题是最大化投资者的未来收益或将他们未来的风险降至最低。我们将进一步发展支持此类问题建模和研究的概率理论。将特别关注除随机性外,模型还必须反映系统中可能发生的某些特定不连续的情况。一个例子是对一家公司的最佳投资,该公司可能会面临破产程序,或者更广泛地说,可能会发生重大变化。除了发展数学理论外,我们还致力于加深对这类系统的数值计算的理解,以便该项目的结果将直接惠及金融工程界和学术界。此外,拟议的研究活动将包括对本科生和研究生的指导,以及通过在科学期刊上发表演讲和发表文章来传播科学。众所周知,许多最优随机控制问题的值和最优策略都可以用(正)倒向随机微分方程来刻画。然而,这些方程因适定性而对系数施加了相当强的正则性条件,严重限制了用这些概率方法解决控制问题的领域。在第一部分,本项目的目的是发展一套新的思想,用于研究具有粗系数的倒向随机微分方程解的适定性和正则性,以及与之相关的二阶偏微分方程解的适定性和正则性。我们设想的主要方法将充分利用Malliavin微积分理论中的强紧性准则。然后,我们将考虑一些应用,包括在粗糙偏微分方程组、定量金融(投资组合优化问题)和最优运输方面的应用。将我们的理论结果与新开发的用于倒向随机微分方程近似的深度学习方法结合在一起,将进一步允许对在一些应用领域构建的解进行数值模拟。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional inequalities for forward and backward diffusions
  • DOI:
    10.1214/20-ejp495
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Daniel Bartl;Ludovic Tangpi
  • 通讯作者:
    Daniel Bartl;Ludovic Tangpi
Quadratic transportation inequalities for SDEs with measurable drift
  • DOI:
    10.1090/proc/15477
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Bahlali;S. Mouchtabih;Ludovic Tangpi
  • 通讯作者:
    K. Bahlali;S. Mouchtabih;Ludovic Tangpi
Strong solutions of forward–backward stochastic differential equations with measurable coefficients
具有可测系数的前向-后向随机微分方程的强解
Backward propagation of chaos
  • DOI:
    10.1214/22-ejp777
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    M. Laurière;Ludovic Tangpi
  • 通讯作者:
    M. Laurière;Ludovic Tangpi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ludovic Tangpi其他文献

The Amazing Power of Dimensional Analysis: Quantifying Market Impact
维度分析的惊人力量:量化市场影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathias Pohl;Alexander Ristig;W. Schachermayer;Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
PR ] 1 5 N ov 2 01 9 BACKWARD PROPAGATION OF CHAOS
PR ] 1 5 Nov 2 01 9 混沌的向后传播
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Laurière;Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
A probabilistic approach to vanishing viscosity for PDEs on the Wasserstein space
Wasserstein 空间上偏微分方程消失粘度的概率方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
Probabilistic approach to quasilinear PDEs with measurable coefficients
具有可测量系数的拟线性偏微分方程的概率方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng Luo;Olivier Menoukeu;Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
Laplace principle for large population games with control interaction
具有控制交互的大规模人口博弈的拉普拉斯原理

Ludovic Tangpi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ludovic Tangpi', 18)}}的其他基金

Conference: Stochastic Control for Financial Engineering: Methods and Numerics
会议:金融工程的随机控制:方法和数值
  • 批准号:
    2304414
  • 财政年份:
    2023
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Standard Grant
CAREER: A new form of propagation of chaos and its applications to large population games and risk management
职业:混沌传播的新形式及其在大规模人口博弈和风险管理中的应用
  • 批准号:
    2143861
  • 财政年份:
    2022
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Continuing Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Rough set approach to vocational problems in young and middle-aged persons
中青年职业问题的粗集方法
  • 批准号:
    21530661
  • 财政年份:
    2009
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and application of granular decision systems: a rough-fuzzy set approach
粒度决策系统的设计和应用:粗糙模糊集方法
  • 批准号:
    170398-2000
  • 财政年份:
    2003
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Discovery Grants Program - Individual
Design and application of granular decision systems: a rough-fuzzy set approach
粒度决策系统的设计和应用:粗糙模糊集方法
  • 批准号:
    170398-2000
  • 财政年份:
    2002
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Discovery Grants Program - Individual
Design and application of granular decision systems: a rough-fuzzy set approach
粒度决策系统的设计和应用:粗糙模糊集方法
  • 批准号:
    170398-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Discovery Grants Program - Individual
THE UMLS FOR TEXT RETRIEVAL - A ROUGH SET APPROACH
用于文本检索的 UMLS - 粗糙集方法
  • 批准号:
    6031324
  • 财政年份:
    2000
  • 资助金额:
    $ 29.39万
  • 项目类别:
Design and application of granular decision systems: a rough-fuzzy set approach
粒度决策系统的设计和应用:粗糙模糊集方法
  • 批准号:
    170398-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Discovery Grants Program - Individual
THE UMLS FOR TEXT RETRIEVAL - A ROUGH SET APPROACH
用于文本检索的 UMLS - 粗糙集方法
  • 批准号:
    6391285
  • 财政年份:
    2000
  • 资助金额:
    $ 29.39万
  • 项目类别:
Knowledge discovery and machine learning: rough sets approach
知识发现和机器学习:粗糙集方法
  • 批准号:
    2519-1994
  • 财政年份:
    1997
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Discovery Grants Program - Individual
Knowledge discovery and machine learning: rough sets approach
知识发现和机器学习:粗糙集方法
  • 批准号:
    2519-1994
  • 财政年份:
    1996
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Discovery Grants Program - Individual
Knowledge discovery and machine learning: rough sets approach
知识发现和机器学习:粗糙集方法
  • 批准号:
    2519-1994
  • 财政年份:
    1995
  • 资助金额:
    $ 29.39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了