CAREER: A new form of propagation of chaos and its applications to large population games and risk management

职业:混沌传播的新形式及其在大规模人口博弈和风险管理中的应用

基本信息

  • 批准号:
    2143861
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Stochastic differential games are optimal decision problems involving several players in interaction, acting in a random, uncertain environment. In such games players try either individually or collectively to optimize a given objective, while their decisions influence that of their peers. This type of game is widespread around us. For instance, in financial economics when considering the systemic risk of default by a large number of banks engaged in inter-bank borrowing and lending, in urban planning when modeling commuters trying to find the shortest path while avoiding congestions, or in epidemiology when all members of a society come together to reduce the spread of a virus. Several examples can also be found in biology, economics, and engineering. When the size of the population becomes large, (stochastic) differential games become notoriously intractable, and cause serious analytical and computational challenges. A basic mathematical heuristic suggests that when the size of the population is sufficiently large, it suffices to analyze the behavior of a "typical" or average player that represents the entire population. The goal of the proposed project is to develop mathematical techniques allowing one to make this heuristic rigorous and to understand its scope and consequences as they relate to computational issues and applications in the financial modeling of bubble formation and investment among competitive agents. Both graduate and undergraduate students will be involved in this work. An extensive outreach program helping to increase the participation of minorities in engineering graduate school will be established.The present research project will lay down a rigorous and systematic framework for understanding the mean field game limit in stochastic differential games by purely probabilistic arguments, while explaining the physical (thermodynamic) intuition at the root of the theory. As the main tool to achieve its objectives, this project will introduce and analyze a new form of propagation of chaos for interacting particle systems evolving backward in time, and functional inequalities in this setting. This novel approach will have interesting consequences as it will allow to provide both large deviation principles and non-asymptotic convergence rates to the mean field limit for competitive as well as cooperative games. We will also consider the consequences of these results as they relate to numerical simulations and applications in quantitative financial modeling. The proposed research endeavor will not only advance the currently active area of mean field games but will be of great interest in the study of interacting particle systems in general. We foresee that backward propagation of chaos and the techniques used to analyze convergence of empirical processes will find numerous applications. For instance, we will employ such techniques to analyze (large scale) optimal transportation problems, and to the estimation of financial risk measures. In fact, we will develop model–free, fully data-driven approaches for the estimation of general convex risk measures based on empirical process theory and propagation of chaos.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。随机微分对策是指在随机、不确定的环境中,多个参与者相互作用的最优决策问题。在这样的游戏中,参与者试图单独或集体地优化给定的目标,而他们的决定会影响他们的同伴。这种游戏在我们周围很普遍。例如,在金融经济学中,当考虑大量银行从事银行间借贷的系统性违约风险时,在城市规划中,当模拟通勤者试图找到最短路径同时避免拥挤时,或者在流行病学中,当所有社会成员聚集在一起以减少病毒的传播时。在生物学、经济学和工程学中也可以找到几个例子。当人口规模变得很大时,(随机)微分博弈变得非常棘手,并导致严重的分析和计算挑战。一个基本的数学启发式表明,当人口规模足够大时,它足以分析代表整个人口的“典型”或平均玩家的行为。该项目的目标是开发数学技术,使人们能够使这种启发式的严格,并了解其范围和后果,因为它们涉及到计算问题和应用程序中的金融建模的泡沫形成和投资之间的竞争代理。研究生和本科生都将参与这项工作。本研究计划将建立一个严格而系统的框架,通过纯粹的概率论证来理解随机微分博弈中的平均场博弈极限,同时解释理论根源的物理(热力学)直觉。作为实现其目标的主要工具,该项目将介绍和分析一种新的形式的混沌传播的相互作用粒子系统的时间发展,并在此设置的功能不等式。这种新的方法将有有趣的后果,因为它将允许提供大偏差原则和非渐近收敛速度的平均场限制的竞争以及合作游戏。我们还将考虑这些结果的后果,因为它们与数值模拟和定量金融建模中的应用有关。拟议的研究奋进不仅将推进目前活跃的平均场游戏领域,但在一般的相互作用的粒子系统的研究将是极大的兴趣。我们可以预见,混沌的反向传播和用于分析经验过程收敛性的技术将得到广泛的应用。例如,我们将采用这种技术来分析(大规模)最优运输问题,并估计金融风险措施。事实上,我们将开发无模型、完全数据驱动的方法,用于基于经验过程理论和混沌传播的一般凸风险度量的估计。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum Principle for Stochastic Control of SDEs with Measurable Drifts
Convergence of Large Population Games to Mean Field Games with Interaction Through the Controls
  • DOI:
    10.1137/22m1469328
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Laurière;Ludovic Tangpi
  • 通讯作者:
    M. Laurière;Ludovic Tangpi
Stochastic Control of Optimized Certainty Equivalents
  • DOI:
    10.1137/21m1407732
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julio D. Backhoff Veraguas;Max Reppen;Ludovic Tangpi
  • 通讯作者:
    Julio D. Backhoff Veraguas;Max Reppen;Ludovic Tangpi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ludovic Tangpi其他文献

The Amazing Power of Dimensional Analysis: Quantifying Market Impact
维度分析的惊人力量:量化市场影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathias Pohl;Alexander Ristig;W. Schachermayer;Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
PR ] 1 5 N ov 2 01 9 BACKWARD PROPAGATION OF CHAOS
PR ] 1 5 Nov 2 01 9 混沌的向后传播
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Laurière;Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
A probabilistic approach to vanishing viscosity for PDEs on the Wasserstein space
Wasserstein 空间上偏微分方程消失粘度的概率方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
Probabilistic approach to quasilinear PDEs with measurable coefficients
具有可测量系数的拟线性偏微分方程的概率方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng Luo;Olivier Menoukeu;Ludovic Tangpi
  • 通讯作者:
    Ludovic Tangpi
Laplace principle for large population games with control interaction
具有控制交互的大规模人口博弈的拉普拉斯原理

Ludovic Tangpi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ludovic Tangpi', 18)}}的其他基金

Conference: Stochastic Control for Financial Engineering: Methods and Numerics
会议:金融工程的随机控制:方法和数值
  • 批准号:
    2304414
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Probabilistic Approach to Rough PDEs: Applications to Finance and Control
粗偏微分方程的概率方法:在金融和控制中的应用
  • 批准号:
    2005832
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
  • 批准号:
    82371478
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
tau轻子衰变与新物理模型唯象研究
  • 批准号:
    11005033
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
  • 批准号:
    81072676
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
强子对撞机上新物理信号的多轻子末态研究
  • 批准号:
    10675110
  • 批准年份:
    2006
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
  • 批准号:
    2426095
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
High throughput screening and drug discovery for antagonists of the Ebola VP40 protein assembly
埃博拉 VP40 蛋白组装拮抗剂的高通量筛选和药物发现
  • 批准号:
    10760573
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Preclinical testing of early life anti-myostatin therapy for osteogenesis imperfecta
早期抗肌生长抑制素治疗成骨不全症的临床前测试
  • 批准号:
    10840238
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
New drugs and new targets: in search of new classes of drugs that inhibit rhodoquinone-dependent metabolism, an unusual form of anaerobic metabolism that allows parasites to survive in the human gut
新药和新靶标:寻找抑制罗多醌依赖性代谢的新型药物,这是一种不寻常的厌氧代谢形式,可让寄生虫在人体肠道中生存
  • 批准号:
    479299
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Operating Grants
Treating non-small cell lung tumors with a novel inhaled dry powder chemotherapeutic formulation
用新型吸入干粉化疗制剂治疗非小细胞肺肿瘤
  • 批准号:
    10696996
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Capturing the complexities of informal caregiver networks: New measures to improve outcomes for informal care partners of people living with Alzheimer’s disease and related dementias (AD/ADRD)
了解非正式护理人员网络的复杂性:改善阿尔茨海默病和相关痴呆症 (AD/ADRD) 患者的非正式护理伙伴的结果的新措施
  • 批准号:
    10728350
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Ultrasound-coupled Electrical Impedance Tomography for Sarcopenia Assessment
用于肌肉减少症评估的超声耦合电阻抗断层扫描
  • 批准号:
    10760707
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Stop pulmonary airleaks with a novel inhaled dry powder aerosol
使用新型吸入干粉气雾剂阻止肺部漏气
  • 批准号:
    10602342
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了