Collaborative Research: Nanoscale Heterostructures and Defects in Two-Dimensional Materials
合作研究:纳米级异质结构和二维材料缺陷
基本信息
- 批准号:2006446
- 负责人:
- 金额:$ 41.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe search for materials with applications in various types of technologies is driven by the need to increase speed, improve efficiency, and reduce power consumption. This search has led many researchers to consider atomically thin two-dimensional systems. Such systems have novel properties with many possible applications in electronic and photonic devices as well as in sensing and catalysis. Recently, researchers found that combining various two-dimensional materials in the same plane or in stacks of layers opens the door to targeting and enhancing specific material properties for applications. The PIs plan to develop computationally efficient models to study and predict the growth and properties of such systems. More specifically, the research will involve determining how defects in these systems alter material properties, as it is well known that defects play a significant role in determining functionality. This research will also involve understanding how defects naturally occur during the growth and manufacturing processes, in order to determine the best methods for producing defect-free structures that would be needed in high-quality material systems and applications.This project supports the training and education of graduate students in cutting-edge materials-physics research and contributes to a globally competitive and diverse workforce through these educational activities. The project will involve broad international collaborations across different scientific disciplines. Outreach activities will be conducted in an all-girls Detroit public school, to provide much-needed enhancement of K-12 science education for female underrepresented minority students.TECHNICAL SUMMARYThis project supports the integration of theoretical and computational research and education to model and predict novel heterostructures and complex defects in two-dimensional (2D) materials and understand underlying fundamental mechanisms. The focus of this research is on the study of both in-plane 2D and out-of-plane quasi-2D heterostructures, nanoscale patterns, and complex topological defects that emerge during the growth and assembly of single- and multi-component 2D materials. Of particular interest are graphene, hexagonal boron nitride, and transition-metal dichalcogenides, among many others. Predictive models, based on the phase-field-crystal method and its amplitude formulation, incorporating both microscopic and mesoscopic scales, will be developed to study the structural and dynamical properties of these fundamentally important nanostructures and defects. These approaches incorporate material elasticity, plasticity, and atomistic details such as dislocations, grain boundaries, and triple junctions on large length and time scales inaccessible to traditional atomistic techniques.The models developed will be used to predict microstructure formation and dynamics of morphologically and compositionally modulated interfacial nanopatterns as well as the formation, motion, and influence of complex defects. Examples include in-plane lateral heterojunctions composed of different types of 2D materials and out-of-plane heterostructures with effects of the third dimension and of deformations. Growth mechanisms will also be investigated to identify the optimal conditions for the controllable synthesis of the predicted nanoscale heterostructures. This research will provide new insights into the fundamental mechanisms governing the development of these low-dimensional material structures, particularly the coupling mechanisms between micro and meso scales and effects of various growth and processing conditions. The study will also enable the investigation and prediction of new thermal and electronic properties of these novel 2D systems, with the goal of linking microstructures to material properties and in turn to processing conditions.This project will contribute to a globally competitive and diverse workforce by training and educating students in cutting-edge research and will involve broad international collaborations across different scientific disciplines. In addition, outreach activities will be conducted to enhance K-12 science education for underrepresented minority students in an all-girls Detroit public school.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结在各种技术中应用的材料的搜索是由提高速度,提高效率和降低功耗的需求驱动的。这一探索使许多研究人员考虑原子薄的二维系统。这种系统具有新颖的性质,在电子和光子器件以及传感和催化中具有许多可能的应用。最近,研究人员发现,将各种二维材料组合在同一平面或多层中,为针对和增强特定材料的应用特性打开了大门。PI计划开发计算效率高的模型来研究和预测这些系统的增长和特性。更具体地说,研究将涉及确定这些系统中的缺陷如何改变材料特性,因为众所周知,缺陷在确定功能方面起着重要作用。这项研究还将涉及了解缺陷如何在生长和制造过程中自然发生,以确定生产高质量材料系统和应用所需的无缺陷结构的最佳方法。该项目支持尖端材料研究生的培训和教育-物理研究,并有助于通过这些教育活动的全球竞争力和多样化的劳动力。该项目将涉及不同科学学科的广泛国际合作。外展活动将在底特律的一所女子公立学校进行,为女性代表性不足的少数民族学生提供急需的K-12科学教育的增强。TECHNICAL SUMMARYThis项目支持理论和计算研究与教育的整合,以模拟和预测新颖的异质结构和复杂的缺陷,在二维(2D)材料和了解基本的基本机制。本研究的重点是研究面内2D和面外准2D异质结构、纳米级图案以及在单组分和多组分2D材料的生长和组装过程中出现的复杂拓扑缺陷。特别感兴趣的是石墨烯、六方氮化硼和过渡金属二硫属化物等。预测模型,相场晶体方法及其振幅制定的基础上,结合微观和介观尺度,将开发研究这些根本重要的纳米结构和缺陷的结构和动力学特性。这些方法结合了材料的弹性,塑性和原子的细节,如位错,晶界,和三重结在大的长度和时间尺度上无法进入传统atomistic techniques.开发的模型将被用来预测微观结构的形成和动态的形态和成分调制的界面nanopatites以及复杂缺陷的形成,运动和影响。实例包括由不同类型的2D材料组成的平面内横向异质结和具有第三维和变形效应的平面外异质结构。生长机制也将进行调查,以确定预测的纳米异质结构的可控合成的最佳条件。这项研究将为这些低维材料结构发展的基本机制提供新的见解,特别是微观和介观尺度之间的耦合机制以及各种生长和加工条件的影响。该研究还将有助于研究和预测这些新型2D系统的新的热和电子特性,目标是将微结构与材料特性联系起来,进而与加工条件联系起来。该项目将通过培训和教育学生进行尖端研究,为全球竞争力和多元化的劳动力做出贡献,并将涉及不同科学学科的广泛国际合作。此外,推广活动将进行,以加强K-12科学教育的代表性不足的少数民族学生在所有女子底特律公立学校。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用该基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Grain rotation and coupled grain boundary motion in two-dimensional binary hexagonal materials
- DOI:10.1016/j.actamat.2021.117583
- 发表时间:2021-12
- 期刊:
- 影响因子:9.4
- 作者:Brendon Waters;Zhilong Huang
- 通讯作者:Brendon Waters;Zhilong Huang
Atomic ordering and phase separation in lateral heterostructures and multijunctions of ternary two-dimensional hexagonal materials
- DOI:10.1103/physrevmaterials.6.074001
- 发表时间:2022-06
- 期刊:
- 影响因子:3.4
- 作者:Zhihong Huang
- 通讯作者:Zhihong Huang
Nanoparticle geometrical effects on percolation, packing density, and magnetoresistive properties in ferromagnet-superconductor-insulator nanocomposites
纳米粒子几何对铁磁体-超导体-绝缘体纳米复合材料中渗流、堆积密度和磁阻性能的影响
- DOI:10.1103/physrevb.106.224417
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Liu, Xiangdong;Panguluri, Raghava P.;Mukherjee, Rupam;Mishra, Debabrata;Pokhrel, Shiva;Shoemaker, Daniel P.;Huang, Zhi-Feng;Nadgorny, Boris
- 通讯作者:Nadgorny, Boris
Defect dynamics in active smectics induced by confining geometry and topology
- DOI:10.1038/s42005-022-01064-1
- 发表时间:2022-04
- 期刊:
- 影响因子:5.5
- 作者:Zhi-Feng Huang;H. Löwen;A. Voigt
- 通讯作者:Zhi-Feng Huang;H. Löwen;A. Voigt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZhiFeng Huang其他文献
ZhiFeng Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZhiFeng Huang', 18)}}的其他基金
Exploring Growth Mechanisms of Nonequilibrium Nanostructured Materials
探索非平衡纳米结构材料的生长机制
- 批准号:
1609625 - 财政年份:2017
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
CAREER: Modeling Nanostructured Systems Outside of Equilibrium
职业:平衡外纳米结构系统建模
- 批准号:
0845264 - 财政年份:2009
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
- 批准号:
2227128 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
- 批准号:
2227135 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
- 批准号:
2216162 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
- 批准号:
2216256 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322891 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the nanoscale interactions during mineral nucleation and scale formation on polymer surfaces
合作研究:破译聚合物表面矿物成核和结垢过程中的纳米级相互作用
- 批准号:
2232686 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the nanoscale interactions during mineral nucleation and scale formation on polymer surfaces
合作研究:破译聚合物表面矿物成核和结垢过程中的纳米级相互作用
- 批准号:
2232687 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322892 - 财政年份:2023
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: Controlling Nanoscale Self-Assembly via Binding-Induced Polarization
合作研究:通过结合诱导极化控制纳米级自组装
- 批准号:
2203675 - 财政年份:2022
- 资助金额:
$ 41.4万 - 项目类别:
Standard Grant
Collaborative Research: Nanoscale structure and dynamics of a cell-cell adhesion complex
合作研究:细胞-细胞粘附复合物的纳米级结构和动力学
- 批准号:
2202202 - 财政年份:2022
- 资助金额:
$ 41.4万 - 项目类别:
Continuing Grant