Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics

合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)

基本信息

  • 批准号:
    2322892
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Quantum technologies are poised to usher in new capabilities for secure data communication, advanced computing, and improved sensing. In these applications, photons play a crucial role in transferring quantum information. Thus, developing sources of quantum light, single and entangled photons, is essential for advancing these applications and generating societal impact through new technologies/capabilities. Yet many of the existing techniques for producing quantum light are limited by their random production of photons in time or poor rate of photon production, and, they largely operate in free space. This work seeks to realize a device that is able to rapidly assemble and improve the rate of single photon production on-chip. It will provide new information into the manipulation and enhancement of quantum optical emitters across multiple length scales, realize a prototype device for single photon production on-chip, and develop resources for training a new generation of quantum optical scientists through the creation of virtual laboratory exercises and simulations.This project intends to realize ‘nanoscale emitter dock’ to simultaneously overcome two outstanding challenges for quasi-atom non-classical light sources - rapid and precise integration of an emitter alongside emission enhancement (trap and enhance) at room temperature. We accomplish this by engineering thermal and optical spatial distributions through non-resonant plasmonic structures paired with a standard low-loss photonic backbone (Si/SiN) for excitation and routing. Doing so enables a ‘multi-scale funnel’, synergistically combining electrothermoplasmonic (mm), negative thermophoretic (μm), and optical gradient forces (nm), to dock a single emitter with an electromagnetic hot-spot where strong enhancement to emission (Purcell effect) improves both the emission rate and stability. Through this we (A) deterministically route, capture, and ultimately print single quantum emitters (~20 nm) to a nanoscale hot-spot within seconds with sub-10 nm precision, (B) enhance the emission rate up to 1000× to achieve GHz-rates, (C) excite, capture, and guide light on-chip with dB/mm-scale loss.The proposed effort will culminate in the demonstration of a scalable and versatile platform for integrated on-demand GHz-rate single photon sources at room temperature, that will accelerate the expansion of compact quantum key distribution systems and quantum simulators. Moreover, the synergistic integration of optical gradient force, attractive negative thermophoretic force, and long-range electrothermoplasmonic flow for emitter transport and placement at plasmonic cavity hotspots have not been explored, and would provide a powerful means for long-range, precise, and strong optical manipulation on-chip. This manipulation (and the overall proposed device structure) is also general, and not dependent upon the properties of any emitter, solving existing heterogeneous integration challenges. It can also be completed in parallel, allowing an entire wafer to be loaded simultaneously, opening a route to scale source construction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术有望为安全数据通信、先进计算和改进传感带来新的能力。在这些应用中,光子在传输量子信息方面发挥着至关重要的作用。因此,开发量子光源、单个光子和纠缠光子,对于推进这些应用并通过新技术/能力产生社会影响至关重要。然而,许多现有的产生量子光的技术受到光子随机产生时间或光子产生速率差的限制,并且它们主要在自由空间中运行。这项工作旨在实现一种能够快速组装并提高单光子生产率的器件。它将为跨多个长度尺度的量子光发射器的操纵和增强提供新的信息,实现单光子生产的原型设备,并通过创建虚拟实验室练习和模拟来开发培训新一代量子光学科学家的资源。该项目旨在实现“纳米级发射器对接”,以同时克服准-原子非经典光源-在室温下快速精确地集成发射器以及发射增强(捕获和增强)。我们通过非共振等离子体结构与标准的低损耗光子骨干(Si/SiN)的激发和路由工程热和光空间分布来实现这一点。这样做使得“多尺度漏斗”能够协同地组合电热等离子体(mm)、负热泳(μm)和光学梯度力(nm),以将单个发射器与电磁热点对接,其中对发射的强增强(珀塞尔效应)提高了发射速率和稳定性。通过此,我们(A)在几秒钟内以低于10 nm的精度确定性地路由、捕获并最终将单个量子发射器(~20 nm)打印到纳米级热点,(B)将发射速率提高到1000倍以实现GHz速率,(C)激发、捕获并以dB/mm级损耗在片上引导光。拟议的努力将最终展示一个可扩展的多功能平台,用于集成按需GHz-这将加速紧凑型量子密钥分配系统和量子模拟器的扩展。此外,光学梯度力、吸引性负热泳力和用于发射体传输和放置在等离子体腔热点处的远程电热等离子体流的协同集成尚未被探索,并且将为芯片上的远程、精确和强光学操纵提供有力的手段。这种操作(以及整体提出的器件结构)也是通用的,并且不依赖于任何发射器的属性,解决了现有的异构集成挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justus Ndukaife其他文献

Justus Ndukaife的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justus Ndukaife', 18)}}的其他基金

CAREER: Resonant Dielectric Optical Metasurfaces for Single-Cell Extracellular Vesicles (EV) Analysis
职业:用于单细胞胞外囊泡 (EV) 分析的共振介电光学超表面
  • 批准号:
    2143836
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Optically resonant nanotweezers using dielectric bowtie cavities
使用介电领结腔的光学谐振纳米镊子
  • 批准号:
    1933109
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了