Biophysical multiscale modeling of mitochondrial swelling

线粒体肿胀的生物物理多尺度建模

基本信息

项目摘要

Mitochondria are the “power plants” of cells, providing ATP for myriad processes. The inner mitochondrial membrane (IMM) is essential for ATP production and plays a critical role in maintaining the volume of this organelle. Small reversible changes in the volume are associated with regulation of mitochondrial function, whereas large irreversible changes result in mitochondrial dysfunction and even cell death. The primary mechanism of excessive mitochondrial swelling includes the opening of channels known as permeability transition pores. The mechanisms underlying the transition from the reversible to irreversible swelling remain unclear. What intra- and extramitochondrial factors are involved in swelling? How the physical and chemical characteristics of the IMM coordinate this process? The multiscale biophysical modeling proposed in this project will characterize mitochondrial swelling throughout all its phases and, thus, describe the mechanisms of transition from the reversible to irreversible swelling. The project will develop a more comprehensive model of this fundamental biological process by application of a wide range of experimental and modeling approaches. The Broader Impact activities will include the training of students in quantitative analysis and modeling approaches.The main goal of this project is to develop a comprehensive model of mitochondrial swelling based on the kinetics of ions and neutral species through the IMM and the mechanical characteristics of the membrane. The project aims to provide an in-depth understanding of the mechanisms that mediate mitochondrial swelling by developing a biophysical multiscale model to simulate and predict the dynamics of mitochondrial swelling. The values of modeling parameters will be calculated using parameter estimation techniques, and the model will be verified and validated by fitting analysis of the minimum average differences between the model and the experimental data. These approaches will iteratively improve the predictive accuracy of the model. The regulation of the mitochondrial matrix volume can provide relief to stress, thus allowing mitochondria to maintain their functional and morphological integrity, aiding in sustaining cellular life. The development of the in silico modeling from a simple kinetic model to a complex model will take into consideration the dynamics of mitochondrial ion diffusion, kinetic factors, membrane potential, and membrane mechanical properties and provide a solid foundation for application of new developed mathematical tools to other model analyses in the cell. The model will consider nonlinear mechanical stress in membranes induced by a swelling process, which is an important factor in the modeling of mitochondria behavior. The mechanical stress parameters will describe membrane decay and cover both reversible and irreversible mitochondrial swelling. Accurate estimation of the threshold parameters for the transition of the reversible to the irreversible swelling is important for understanding the mechanisms of cell death.This project is jointly funded by the Division of Molecular and Cellular Biology, along with the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
线粒体是细胞的“发电厂”,为无数过程提供ATP。线粒体内膜(IMM)对于ATP的产生是必不可少的,并且在维持该细胞器的体积方面起着关键作用。体积的小的可逆变化与线粒体功能的调节相关,而大的不可逆变化导致线粒体功能障碍甚至细胞死亡。线粒体过度肿胀的主要机制包括称为渗透性转换孔的通道的打开。从可逆到不可逆肿胀的转变机制尚不清楚。什么线粒体内和线粒体外的因素参与肿胀?IMM的物理和化学特性如何协调这一过程?在这个项目中提出的多尺度生物物理模型将表征线粒体肿胀在其所有阶段,因此,描述从可逆到不可逆的肿胀过渡的机制。该项目将通过应用广泛的实验和建模方法,开发一个更全面的基本生物过程模型。更广泛的影响活动将包括对学生进行定量分析和建模方法的培训。该项目的主要目标是开发一个基于离子和中性物质通过IMM的动力学以及膜的机械特性的线粒体肿胀的综合模型。该项目旨在通过开发生物物理多尺度模型来模拟和预测线粒体肿胀的动态,从而深入了解介导线粒体肿胀的机制。将使用参数估计技术计算建模参数值,并通过拟合分析模型与实验数据之间的最小平均差异来验证和确认模型。这些方法将迭代地提高模型的预测准确性。线粒体基质体积的调节可以缓解压力,从而允许线粒体保持其功能和形态完整性,有助于维持细胞生命。从一个简单的动力学模型到一个复杂的模型的发展将考虑到线粒体离子扩散的动力学,动力学因素,膜电位和膜机械性能,并提供了一个坚实的基础,新开发的数学工具的应用程序在细胞中的其他模型分析。该模型将考虑由溶胀过程引起的膜中的非线性机械应力,这是线粒体行为建模中的重要因素。机械应力参数将描述膜衰减,并涵盖可逆和不可逆的线粒体肿胀。准确估计可逆肿胀向不可逆肿胀转变的阈值参数对于理解细胞死亡的机制是重要的。本项目由分子和细胞生物学部联合资助,沿着的是刺激竞争研究的既定计划(EPSCoR)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitochondria and ferroptosis
  • DOI:
    10.1016/j.cophys.2022.100483
  • 发表时间:
    2022-02-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Javadov, Sabzali
  • 通讯作者:
    Javadov, Sabzali
Elucidating the role of adenine nucleotide transporter in mitochondrial swelling: an experimental and computational approaches
阐明腺嘌呤核苷酸转运蛋白在线粒体肿胀中的作用:实验和计算方法
  • DOI:
    10.1096/fasebj.2022.36.s1.r5305
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chapa‐Dubocq, Xavier R.;Garcia‐Baez, Jorge F.;Bazil, Jason N.;Javadov, Sabzali R.
  • 通讯作者:
    Javadov, Sabzali R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sabzali Javadov其他文献

Mechanisms of ferroptosis in cardiac diseases: the role of mitochondria
  • DOI:
    10.1016/j.bbadis.2024.167374
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sabzali Javadov
  • 通讯作者:
    Sabzali Javadov
103 - Downregulation of SIRT3 Exerts Mitochondrial Dysfunction in Cultured Cardiomyocytes
  • DOI:
    10.1016/j.freeradbiomed.2014.10.418
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca Maria Parodi-Rullán;Sergiy Nadtochiy;Paul Brookes;Sabzali Javadov
  • 通讯作者:
    Sabzali Javadov
Developing a physiologically relevant cell model of ferroptosis in cardiomyocytes
建立心肌细胞中一种具有生理相关性的铁死亡细胞模型
  • DOI:
    10.1016/j.freeradbiomed.2025.04.006
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Jorge Garcia-Baez;Ivana Chaves-Negrón;Sabzali Javadov;Jason N. Bazil;Xavier R. Chapa-Dubocq
  • 通讯作者:
    Xavier R. Chapa-Dubocq

Sabzali Javadov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

热力耦合方程组的并行多尺度算法
  • 批准号:
    11301329
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
  • 批准号:
    50876120
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目
ABR颗粒污泥的多尺度结构形态、理化特征与分子生态学解析
  • 批准号:
    50578012
  • 批准年份:
    2005
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 85.99万
  • 项目类别:
    Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 85.99万
  • 项目类别:
    Standard Grant
CAREER: Multiscale Modeling of Thrombus Formation and its Response to External Loads
职业:血栓形成的多尺度建模及其对外部负载的响应
  • 批准号:
    2340696
  • 财政年份:
    2024
  • 资助金额:
    $ 85.99万
  • 项目类别:
    Standard Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 85.99万
  • 项目类别:
    Standard Grant
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
  • 批准号:
    2339054
  • 财政年份:
    2024
  • 资助金额:
    $ 85.99万
  • 项目类别:
    Standard Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 85.99万
  • 项目类别:
    Continuing Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 85.99万
  • 项目类别:
Systems Approaches to Understanding the Impact of Cell-Cell Fusion on Therapeutic Resistance
了解细胞间融合对治疗耐药性影响的系统方法
  • 批准号:
    10607123
  • 财政年份:
    2023
  • 资助金额:
    $ 85.99万
  • 项目类别:
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
  • 批准号:
    10621489
  • 财政年份:
    2023
  • 资助金额:
    $ 85.99万
  • 项目类别:
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
  • 批准号:
    2238359
  • 财政年份:
    2023
  • 资助金额:
    $ 85.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了