Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
基本信息
- 批准号:2007115
- 负责人:
- 金额:$ 24.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Edge devices, such as mobile phones, drones and robots, have been emerging as an increasingly more important platform for deep neural network (DNN) inference. For an edge device, selecting an optimal DNN model out of many possibilities is crucial for maximizing the user’s quality of experience (QoE), but this is significantly challenged by the high degree of heterogeneity in edge devices and constant-changing usage scenarios. The current practice commonly selects a single DNN model for many or all edge devices, which can only provide a satisfactory QoE for a small fraction of users at best. Alternatively, device-specific DNN model optimization is time-consuming and not scalable to a large diversity of edge devices. Moreover, the existing approaches focus on optimizing a certain objective metric for edge inference, which may not translate into improvement of the actual QoE for users. By leveraging the predictive power of machine learning and keeping users in a loop, this project proposes an automated and scalable device-level DNN model selection engine for QoE-optimal edge inference. Specifically, this project includes two thrusts: first, it exploits online learning to predict QoE for each edge device, automating deployment-stage DNN model selection; and second, it builds a runtime QoE predictor and automatically selects an optimal DNN model given runtime contextual information.This project represents an important departure from and an essential complement to the current practices in DNN model optimization. It can bring the benefits of DNN-enabled intelligence to many more resource-constrained edge devices with an optimal QoE. Additionally, it provides novel observations, insights and principles for edge inference, catalyzing the transformation of the design of DNN models into a new user-centric paradigm. This project also enables new opportunities to improve curriculum design and attract students, especially under-represented minorities, to engage in science, technology, engineering, and mathematics fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
手机、无人机和机器人等边缘设备已成为深度神经网络 (DNN) 推理日益重要的平台。对于边缘设备而言,从多种可能性中选择最佳的 DNN 模型对于最大化用户体验质量 (QoE) 至关重要,但这受到边缘设备高度异构性和不断变化的使用场景的巨大挑战。目前的实践通常为许多或所有边缘设备选择单一的 DNN 模型,这最多只能为一小部分用户提供令人满意的 QoE。另外,特定于设备的 DNN 模型优化非常耗时,并且无法扩展到多种边缘设备。此外,现有方法侧重于优化边缘推理的某个客观指标,这可能无法转化为用户实际 QoE 的改善。通过利用机器学习的预测能力并使用户处于循环状态,该项目提出了一种自动化且可扩展的设备级 DNN 模型选择引擎,用于 QoE 最佳边缘推理。具体来说,该项目包括两个重点:首先,它利用在线学习来预测每个边缘设备的 QoE,自动化部署阶段的 DNN 模型选择;其次,它构建了一个运行时 QoE 预测器,并在给定运行时上下文信息的情况下自动选择最佳 DNN 模型。该项目代表了对当前 DNN 模型优化实践的重要背离和重要补充。它可以为更多资源受限的边缘设备带来支持 DNN 的智能的优势,并提供最佳的 QoE。此外,它还为边缘推理提供了新颖的观察、见解和原理,促进了 DNN 模型设计向新的以用户为中心的范式的转变。该项目还提供了新的机会来改进课程设计并吸引学生,特别是代表性不足的少数族裔,参与科学、技术、工程和数学领域。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving QoE of Deep Neural Network Inference on Edge Devices: A Bandit Approach
- DOI:10.1109/jiot.2022.3182728
- 发表时间:2022-11
- 期刊:
- 影响因子:10.6
- 作者:Bingqian Lu;Jianyi Yang;Jie Xu;Shaolei Ren
- 通讯作者:Bingqian Lu;Jianyi Yang;Jie Xu;Shaolei Ren
One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search
一台代理设备足以进行硬件感知神经架构搜索
- DOI:10.1145/3489048.3522631
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lu, Bingqian;Yang, Jianyi;Jiang, Weiwen;Shi, Yiyu;Ren, Shaolei
- 通讯作者:Ren, Shaolei
Automated Customization of On-Device Inference for Quality-of-Experience Enhancement
- DOI:10.1109/tc.2022.3208207
- 发表时间:2023-05-01
- 期刊:
- 影响因子:3.7
- 作者:Bai, Yang;Chen, Lixing;Xu, Jie
- 通讯作者:Xu, Jie
Expert-Calibrated Learning for Online Optimization with Switching Costs
具有转换成本的在线优化专家校准学习
- DOI:10.1145/3530894
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Pengfei;Yang, Jianyi;Ren, Shaolei
- 通讯作者:Ren, Shaolei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaolei Ren其他文献
TECH: A Thermal-Aware and Cost Efficient Mechanism for Colocation Demand Response
技术:用于主机代管需求响应的热感知且经济高效的机制
- DOI:
10.1109/icpp.2016.60 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ziqi Zhao;Fan Wu;Shaolei Ren;Xiaofeng Gao;Guihai Chen;Yong Cui - 通讯作者:
Yong Cui
Title Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing Permalink
标题 通过非侵入式工作负载灵活性定价将需求响应扩展到云数据中心的租户 永久链接
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yong Zhan;Shaolei Ren - 通讯作者:
Shaolei Ren
Managing Power Capacity as a First-Class Resource in Multitenant Data Centers
- DOI:
10.1109/mic.2017.2911417 - 发表时间:
2017 - 期刊:
- 影响因子:3.2
- 作者:
Shaolei Ren - 通讯作者:
Shaolei Ren
GreenColo : Incentivizing Tenants for Reducing Carbon Footprint in Colocation Data Centers
GreenColo:激励租户减少托管数据中心的碳足迹
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. A. Islam;H. Mahmud;Shaolei Ren;Xiaorui Wang;Haven Wang;Joseph Scott - 通讯作者:
Joseph Scott
Reconciling the contrasting narratives on the environmental impact of large language models
调和关于大型语言模型对环境影响的截然不同的说法
- DOI:
10.1038/s41598-024-76682-6 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:3.900
- 作者:
Shaolei Ren;Bill Tomlinson;Rebecca W. Black;Andrew W. Torrance - 通讯作者:
Andrew W. Torrance
Shaolei Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaolei Ren', 18)}}的其他基金
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
- 批准号:
2324916 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
DESC: Type I: Enabling Carbon-Zero Colocation Data Centers via Agile and Coordinated Resource Management
DESC:类型 I:通过敏捷和协调的资源管理实现零碳托管数据中心
- 批准号:
2324941 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
- 批准号:
2326598 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
CNS: Small: Towards Intelligent, Coordinated and Scalable Management of Server Sprinting in Edge Data Centers
CNS:小型:迈向边缘数据中心服务器冲刺的智能、协调和可扩展管理
- 批准号:
1910208 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Optimizing Energy Management in Microgrids with Datacenters: An Integrated Approach
优化数据中心微电网的能源管理:综合方法
- 批准号:
1610471 - 财政年份:2016
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
CAREER: Coordinated Power Management in Colocation Data Centers
职业:托管数据中心的协调电源管理
- 批准号:
1551661 - 财政年份:2015
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
CSR: Small: Improving Data Center Water Efficiency via Online Resource Management
CSR:小型:通过在线资源管理提高数据中心用水效率
- 批准号:
1565474 - 财政年份:2015
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
CAREER: Coordinated Power Management in Colocation Data Centers
职业:托管数据中心的协调电源管理
- 批准号:
1453491 - 财政年份:2015
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
CSR: Small: Improving Data Center Water Efficiency via Online Resource Management
CSR:小型:通过在线资源管理提高数据中心用水效率
- 批准号:
1423137 - 财政年份:2014
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant














{{item.name}}会员




