Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices

协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击

基本信息

  • 批准号:
    2326598
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Many computing applications depend on machine learning (ML) algorithms that analyze patterns in data and make predictions about new data they encounter. Many recent advances in these machine learning classifiers use approaches based on neural networks; however, neural networks often require large amounts of data, memory, and processing power. Brain-inspired hyperdimensional computing (HDC) has emerged in recent years as a less resource-heavy approach to building classifiers that are well-suited for smaller computing devices that have less computing power. However, just like other ML classifier architectures, HDC models may be threatened by attackers who want to degrade the models' performance, insert backdoor "triggers" that let attackers take control of devices by presenting secret inputs, or steal the models themselves. However, these security risks in HDC models are not as well-studied as HDC performance. This project's goal is to close that gap through a better understanding of HDC security vulnerabilities and defenses. This includes analyzing the space of possible attacks on HDC models, drawing parallels between attacks and defenses in neural networks and those in HDC models, and developing defenses that are as effective, efficient, and lightweight as the HDC models themselves so they can too be deployed in devices with limited computing power.This project paves the way for HDC-based inference on edge devices by systematically investigating the attack surface for HDC computing, from design time to run time and from algorithm to hardware. First, it explores the vulnerabilities associated with HDC and systematically defines its unique attack surface. Accordingly, it investigates critical threats against HDC model performance and privacy from adversarial input, model perturbation, and reverse engineering. Second, it explores effective and efficient defense strategies by incorporating algorithmic-, hardware-, and system-level methods. A key insight and tool in the proposed work are methods for relating neural network-based models and HDC models; this will allow for comparative studies as well as open possibilities for adapting existing attacks and defenses on neural network-based architectures to HDC contexts. The scientific outcomes will help reshape HDC-enabled computing systems toward greater security and robustness. The project also contains a significant educational component and provides abundant opportunities to nurture and attract students from under-represented groups to engage in computer science and computer science research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多计算应用程序依赖于机器学习(ML)算法,这些算法分析数据中的模式并对它们遇到的新数据进行预测。这些机器学习分类器的许多最新进展使用基于神经网络的方法;然而,神经网络通常需要大量的数据,内存和处理能力。近年来,大脑启发的超维计算(HDC)作为一种资源较少的方法出现,用于构建非常适合计算能力较低的小型计算设备的分类器。然而,就像其他ML分类器架构一样,HDC模型可能会受到攻击者的威胁,他们希望降低模型的性能,插入后门“触发器”,让攻击者通过提供秘密输入来控制设备,或者窃取模型本身。然而,HDC模型中的这些安全风险并没有像HDC性能那样得到充分研究。该项目的目标是通过更好地了解HDC安全漏洞和防御来缩小这一差距。这包括分析HDC模型上可能的攻击空间,绘制神经网络和HDC模型中的攻击和防御之间的相似之处,并开发有效,高效,和轻量级的HDC模型本身,所以他们也可以部署在设备与有限的计算能力。这个项目铺平了道路,HDC-通过系统地研究HDC计算的攻击面,从设计时到运行时,从算法到硬件,基于边缘设备的推理。首先,它探讨了与HDC相关的漏洞,并系统地定义了其独特的攻击面。因此,它调查了对抗性输入,模型扰动和逆向工程对HDC模型性能和隐私的关键威胁。其次,它通过结合算法,硬件和系统级方法来探索有效和高效的防御策略。拟议工作中的一个关键见解和工具是将基于神经网络的模型和HDC模型相关联的方法;这将允许进行比较研究,并为基于神经网络的架构上的现有攻击和防御适应HDC上下文提供可能性。科学成果将有助于重塑支持HDC的计算系统,使其具有更高的安全性和鲁棒性。该项目还包含一个重要的教育组成部分,并提供了大量的机会,培养和吸引学生从代表性不足的群体从事计算机科学和计算机科学研究。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaolei Ren其他文献

TECH: A Thermal-Aware and Cost Efficient Mechanism for Colocation Demand Response
技术:用于主机代管需求响应的热感知且经济高效的机制
Title Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing Permalink
标题 通过非侵入式工作负载灵活性定价将需求响应扩展到云数据中心的租户 永久链接
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yong Zhan;Shaolei Ren
  • 通讯作者:
    Shaolei Ren
Managing Power Capacity as a First-Class Resource in Multitenant Data Centers
  • DOI:
    10.1109/mic.2017.2911417
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Shaolei Ren
  • 通讯作者:
    Shaolei Ren
GreenColo : Incentivizing Tenants for Reducing Carbon Footprint in Colocation Data Centers
GreenColo:激励租户减少托管数据中心的碳足迹
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. A. Islam;H. Mahmud;Shaolei Ren;Xiaorui Wang;Haven Wang;Joseph Scott
  • 通讯作者:
    Joseph Scott
Reconciling the contrasting narratives on the environmental impact of large language models
调和关于大型语言模型对环境影响的截然不同的说法
  • DOI:
    10.1038/s41598-024-76682-6
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Shaolei Ren;Bill Tomlinson;Rebecca W. Black;Andrew W. Torrance
  • 通讯作者:
    Andrew W. Torrance

Shaolei Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaolei Ren', 18)}}的其他基金

Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
  • 批准号:
    2324916
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DESC: Type I: Enabling Carbon-Zero Colocation Data Centers via Agile and Coordinated Resource Management
DESC:类型 I:通过敏捷和协调的资源管理实现零碳托管数据中心
  • 批准号:
    2324941
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
  • 批准号:
    2007115
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CNS: Small: Towards Intelligent, Coordinated and Scalable Management of Server Sprinting in Edge Data Centers
CNS:小型:迈向边缘数据中心服务器冲刺的智能、协调和可扩展管理
  • 批准号:
    1910208
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Optimizing Energy Management in Microgrids with Datacenters: An Integrated Approach
优化数据中心微电网的能源管理:综合方法
  • 批准号:
    1610471
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Coordinated Power Management in Colocation Data Centers
职业:托管数据中心的协调电源管理
  • 批准号:
    1551661
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CSR: Small: Improving Data Center Water Efficiency via Online Resource Management
CSR:小型:通过在线资源管理提高数据中心用水效率
  • 批准号:
    1565474
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Coordinated Power Management in Colocation Data Centers
职业:托管数据中心的协调电源管理
  • 批准号:
    1453491
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CSR: Small: Improving Data Center Water Efficiency via Online Resource Management
CSR:小型:通过在线资源管理提高数据中心用水效率
  • 批准号:
    1423137
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
  • 批准号:
    2230609
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了