Collaborative Research: CNS Core: Small: Closing the Theory-Practice Gap in Understanding and Combating Epidemic Spreading on Resource-Constrained Large-Scale Networks
合作研究:CNS核心:小型:缩小理解和抗击资源有限的大规模网络上的流行病传播的理论与实践差距
基本信息
- 批准号:2007423
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has been an explosive growth in the number of Internet-connected devices. The end-device users have also built a stack of rich and complex networks, derived from their social, personal and work groups. The prolific connections to end-devices and users, however, can be exploited as devastating vehicles for malware and worm attacks. Since exploiting the network connectivity lies at the heart of malware distribution, it becomes crucial to understand how the underlying network structure affects the malware propagation. Despite abundant literature on epidemic modeling and analysis, there is still a huge gap between theory and practice. This project aims to bridge the gap to better understand and combat epidemic spreading on large-scale networks with realistic cost constraints.This collaborative project brings together investigators from Florida Institute of Technology and North Carolina State University to investigate the following inter-related research thrusts. It will (1) develop a theoretical framework to fully characterize the transient dynamics of epidemic spreading on a general graph (as opposed to a complete graph) to estimate and predict the likelihood of each node being infected for the future time, (2) develop a suite of readily usable algorithms to mitigate the spread of an epidemic to the extent possible under realistic constraints, and (3) develop a set of algorithms for efficient estimation and inference of network and epidemic parameters from incomplete and noisy data of epidemic cascades. This project could potentially have a high impact on a vast range of multi-disciplinary areas and applications where the study of epidemics has been necessary and crucial, including epidemiology, percolation in physics and chemistry, rumor spreading, information cascades, viral marketing, and spread of misinformation and fake news. In addition, this project will integrate research findings into education by curriculum development, involve diverse undergraduate and graduate students, especially women and students of underrepresented groups, and have them trained to thrive and contribute to the society in industrial and academic settings after graduation.All products developed during the course of this project will be publicly available and hosted at https://sites.google.com/view/nsf-cns-eun-lee-epidemic for at least three years after the closing of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
互联网连接设备的数量呈爆炸式增长。终端设备用户还建立了一个丰富而复杂的网络,来自他们的社交,个人和工作组。然而,与终端设备和用户的大量连接可能被恶意软件和蠕虫攻击利用为破坏性工具。由于利用网络连接是恶意软件分发的核心,因此了解底层网络结构如何影响恶意软件传播变得至关重要。尽管有大量关于流行病建模和分析的文献,但理论与实践之间仍然存在巨大差距。该项目旨在弥合差距,以更好地了解和打击流行病在大规模网络上传播的现实成本限制。这个合作项目汇集了来自佛罗里达理工学院和北卡罗来纳州州立大学的研究人员,以调查以下相互关联的研究方向。它将(1)发展一个理论框架,在一般图上充分描述流行病传播的瞬态动力学(与完整的图相反)来估计和预测每个节点在未来时间被感染的可能性,(2)开发一套易于使用的算法来在现实约束下尽可能地减轻流行病的传播,以及(3)开发一套算法,用于从流行病级联的不完整和噪声数据中有效地估计和推断网络和流行病参数。 该项目可能会对广泛的多学科领域和应用产生很大影响,其中流行病的研究是必要和关键的,包括流行病学,物理和化学的渗透,谣言传播,信息级联,病毒式营销以及错误信息和假新闻的传播。此外,该项目将通过课程开发将研究成果融入教育,让不同的本科生和研究生,特别是妇女和代表性不足的群体的学生参与进来,并对他们进行培训,使他们毕业后在工业和学术环境中茁壮成长并为社会做出贡献https://sites.google.com/view/nsf-cns-eun-lee-epidemic。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence of Bi-Virus Epidemic Models With Non-Linear Rates on Networks—A Monotone Dynamical Systems Approach
- DOI:10.1109/tnet.2022.3213015
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Vishwaraj Doshi;Shailaja Mallick;Do Young Eun
- 通讯作者:Vishwaraj Doshi;Shailaja Mallick;Do Young Eun
Controlling Epidemic Spread Under Immunization Delay Constraints
在免疫延迟限制下控制疫情蔓延
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Shiju;Huang, Xin;Lee, Chul-Ho Lee;Eun, Do Young
- 通讯作者:Eun, Do Young
Controlling Metastable Infection Patterns in Multilayer Networks via Interlink Design
- DOI:10.1109/tnse.2021.3108075
- 发表时间:2021-10
- 期刊:
- 影响因子:6.6
- 作者:Srinjoy Chattopadhyay;H. Dai;Do Young Eun
- 通讯作者:Srinjoy Chattopadhyay;H. Dai;Do Young Eun
Bi-SIS Epidemics on Graphs - Quantitative Analysis of Coexistence Equilibria
- DOI:10.1109/cdc51059.2022.9992411
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Vishwaraj Doshi;Jie Hu;Do Young Eun
- 通讯作者:Vishwaraj Doshi;Jie Hu;Do Young Eun
Competing Epidemics on Graphs - Global Convergence and Coexistence
- DOI:10.1109/infocom42981.2021.9488828
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Vishwaraj Doshi;Shailaja Mallick;Do Young Eun
- 通讯作者:Vishwaraj Doshi;Shailaja Mallick;Do Young Eun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Do Young Eun其他文献
Modeling time-sensitive information diffusion in online social networks
对在线社交网络中时间敏感的信息传播进行建模
- DOI:
10.1109/infcomw.2015.7179419 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xin Xu;Xin Chen;Do Young Eun - 通讯作者:
Do Young Eun
On the limitation of fluid-based approach for Internet congestion control
基于流体的互联网拥塞控制方法的局限性
- DOI:
10.1007/s11235-006-9028-7 - 发表时间:
2005 - 期刊:
- 影响因子:2.5
- 作者:
Do Young Eun - 通讯作者:
Do Young Eun
A Distributed Wake-Up Scheduling for Opportunistic Forwarding in Wireless Sensor Networks
无线传感器网络中机会转发的分布式唤醒调度
- DOI:
10.1109/glocom.2010.5683254 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Chul;Do Young Eun - 通讯作者:
Do Young Eun
Toward distributed optimal movement strategy for data harvesting in wireless sensor networks
无线传感器网络中数据采集的分布式最优移动策略
- DOI:
10.1109/secon.2012.6275826 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Chul;Do Young Eun - 通讯作者:
Do Young Eun
Stochastic convex ordering for multiplicative decrease internet congestion control
用于乘法减少互联网拥塞控制的随机凸排序
- DOI:
10.1016/j.comnet.2008.10.012 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Han Cai;Do Young Eun;Sangtae Ha;I. Rhee;Lisong Xu - 通讯作者:
Lisong Xu
Do Young Eun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Do Young Eun', 18)}}的其他基金
III: Small: Collaborative Research: Cost-Efficient Sampling and Estimation from Large-Scale Networks
III:小型:协作研究:大规模网络的经济高效采样和估计
- 批准号:
1910749 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS: Small: Distributed and Efficient Randomized Algorithms for Large Networks
NeTS:小型:大型网络的分布式高效随机算法
- 批准号:
1217341 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
TF-SING: A Theoretical Foundation of Spatio-Temporal Mobility Modeling and Induced Link-Level Dynamics
TF-SING:时空移动性建模和诱导链路级动态的理论基础
- 批准号:
0830680 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NEDG: Efficient Design and Control of Heterogeneous Mobile Networks: Beyond Poisson Regime
NEDG:异构移动网络的高效设计和控制:超越泊松法则
- 批准号:
0831825 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: A Stochastic Approach to the Design of Communication Networks: An Alternative to Fluid Modeling
职业生涯:通信网络设计的随机方法:流体建模的替代方法
- 批准号:
0545893 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant