CAREER: A Stochastic Approach to the Design of Communication Networks: An Alternative to Fluid Modeling

职业生涯:通信网络设计的随机方法:流体建模的替代方法

基本信息

  • 批准号:
    0545893
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

The intellectual merit of the proposed research: In recent years, a fluid modeling approach has provided the basis for the understanding and design of communication networks. Such models are especially useful when modeling large networks, as it is often impossible to obtain a complete, probabilistic description of the states for all the users in the network. Instead of enumerating all possible interactions among users and their corresponding state transitions, the fluid-based approach, resting on probabilistic limit theories such as the law of large numbers, allows us to describe the average macroscopic behavior of network dynamics in terms of a set of relatively simple and deterministic difference/differential equations with averaged quantities. Since the fluid modeling approach offers intuitive and manageable solutions to describing the dynamics of large networks, it has been widely used for a variety of important networking problems including congestion control, stability analysis, optimization-based techniques, and peer-to-peer networks.However, the fluid modeling approach has fundamental limitations; it is valid only when the system is scaled as required by the underlying theory. For other types of scaling, the fluid-basedapproach may break down and incorrectly predict even first-order system dynamics. Specifically, the fluid modeling may produce (i) inaccurate system equilibrium, and (ii) inefficient design guidelines for large networks. Furthermore, optimal policies or algorithms derived from the fluid modeling framework may not be truly optimal and could result in poor performance. However, there have been virtually no results to address these limitations associated with the fluid-based approach, and this confines a network designer's choice to a very small subset of what can actually be chosen. With these concerns in mind, this project will achieve the following goals: (1) To understand the fundamental limitations of the fluid-based approach and of the deterministic optimization for large networks. Although a deterministic representation is convenient and often becomes exact for some cases via probabilistic limit theory, it may produce sub-optimal or sometimes poor design guidelines if the network is not scaled in the way assumed by the mean-field approach. (2) To develop a stochastic framework for large networks in which we can compute true performance metrics defined on the stochastic description of the system, while at the same time exploiting the simplicity caused by the interaction among many users. Through our stochastic framework for large networks, we seek to obtain new, efficient design guidelines and algorithms for a number of important networking problems including congestion control, network optimization, and peer-to-peer networks, which would be impossible to obtain under the traditional fluid-based approach.Broader Impact: The research outcomes and findings from this project will impact many important networking problems such as congestion control, and efficient usage of peer-to-peer networks, optimization of wireless networks, and cross-layer approaches to network design. Further, research progress on the proposed problems also has the potential to impact other science and engineering disciplines such as complex theory, statistical physics, and theoretical ecology, in which fluid modeling has played a key role. Based on a thorough investigation from multidisciplinary perspectives, the proposed research will promise a huge return upon its successful completion. The proposed research will foster multidisciplinary collaborations among students to the benefit of their own research, facilitate autonomous gatherings for interchanging ideas and better communication, and will motivate graduate/undergraduate students with diverse backgrounds participating in this project. All the research findings and methodologies developed in this project will be integrated into a new course and made available on the Web for wider dissemination.
拟议研究的智力价值:近年来,流体建模方法为理解和设计通信网络提供了基础。这种模型在对大型网络建模时特别有用,因为通常不可能获得网络中所有用户的状态的完整概率描述。而不是枚举所有可能的用户之间的相互作用和他们相应的状态转换,基于流体的方法,依靠概率极限理论,如大数定律,允许我们描述网络动态的平均宏观行为的一组相对简单和确定性的差分/微分方程的平均量。由于流体建模方法提供了直观和易于管理的解决方案来描述大型网络的动态特性,因此它已被广泛用于各种重要的网络问题,包括拥塞控制,稳定性分析,基于优化的技术和对等网络。然而,流体建模方法有根本的局限性,它只有在系统按基础理论要求缩放时才有效。对于其他类型的缩放,基于流体的方法可能会崩溃,甚至错误地预测一阶系统动力学。具体而言,流体建模可能产生(i)不准确的系统平衡,以及(ii)大型网络的低效设计指南。此外,从流体建模框架导出的最优策略或算法可能不是真正最优的,并且可能导致较差的性能。然而,几乎没有结果来解决与基于流体的方法相关联的这些限制,并且这将网络设计者的选择限制在实际可以选择的非常小的子集。 考虑到这些问题,本项目将实现以下目标:(1)了解基于流体的方法和大型网络的确定性优化的基本局限性。虽然确定性表示是方便的,并且通常通过概率极限理论在某些情况下变得精确,但如果网络没有以平均场方法假设的方式缩放,则可能会产生次优或有时较差的设计指南。(2)为了开发一个随机的大型网络框架,在其中我们可以计算真正的性能指标上定义的随机描述的系统,而在同一时间利用的简单性所造成的许多用户之间的互动。通过我们的大型网络随机框架,我们寻求获得新的,有效的设计准则和算法,用于许多重要的网络问题,包括拥塞控制,网络优化和对等网络,这在传统的基于流体的方法下是不可能获得的。该项目的研究成果和发现将影响许多重要的网络问题,如拥塞控制和对等网络的有效使用,无线网络的优化和网络设计的跨层方法。此外,所提出的问题的研究进展也有可能影响其他科学和工程学科,如复杂理论,统计物理学和理论生态学,其中流体建模发挥了关键作用。基于从多学科角度的深入调查,拟议的研究将承诺其成功完成后,巨大的回报。拟议的研究将促进学生之间的多学科合作,以利于他们自己的研究,促进交流思想和更好的沟通的自主聚会,并将激励研究生/本科生与不同背景的参与这个项目。在这个项目中开发的所有研究结果和方法将被纳入一个新的课程,并在网上提供,以便更广泛地传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Do Young Eun其他文献

Modeling time-sensitive information diffusion in online social networks
对在线社交网络中时间敏感的信息传播进行建模
On the limitation of fluid-based approach for Internet congestion control
基于流体的互联网拥塞控制方法的局限性
  • DOI:
    10.1007/s11235-006-9028-7
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Do Young Eun
  • 通讯作者:
    Do Young Eun
A Distributed Wake-Up Scheduling for Opportunistic Forwarding in Wireless Sensor Networks
无线传感器网络中机会转发的分布式唤醒调度
Toward distributed optimal movement strategy for data harvesting in wireless sensor networks
无线传感器网络中数据采集的分布式最优移动策略
Stochastic convex ordering for multiplicative decrease internet congestion control
用于乘法减少互联网拥塞控制的随机凸排序
  • DOI:
    10.1016/j.comnet.2008.10.012
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Cai;Do Young Eun;Sangtae Ha;I. Rhee;Lisong Xu
  • 通讯作者:
    Lisong Xu

Do Young Eun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Do Young Eun', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Closing the Theory-Practice Gap in Understanding and Combating Epidemic Spreading on Resource-Constrained Large-Scale Networks
合作研究:CNS核心:小型:缩小理解和抗击资源有限的大规模网络上的流行病传播的理论与实践差距
  • 批准号:
    2007423
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Cost-Efficient Sampling and Estimation from Large-Scale Networks
III:小型:协作研究:大规模网络的经济高效采样和估计
  • 批准号:
    1910749
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NeTS: Small: Distributed and Efficient Randomized Algorithms for Large Networks
NeTS:小型:大型网络的分布式高效随机算法
  • 批准号:
    1217341
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
TF-SING: A Theoretical Foundation of Spatio-Temporal Mobility Modeling and Induced Link-Level Dynamics
TF-SING:时空移动性建模和诱导链路级动态的理论基础
  • 批准号:
    0830680
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NEDG: Efficient Design and Control of Heterogeneous Mobile Networks: Beyond Poisson Regime
NEDG:异构移动网络的高效设计和控制:超越泊松法则
  • 批准号:
    0831825
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
A Stochastic Approach for Empirical Analyses of Urban/Traffic Models with Multiple Equilibria
多重均衡城市/交通模型实证分析的随机方法
  • 批准号:
    22K04347
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140627
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    WBP Position
An Integrated Stochastic Approach to Structural Health Monitoring
结构健康监测的综合随机方法
  • 批准号:
    534159-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Asset and liability management: A stochastic control approach
资产和负债管理:随机控制方法
  • 批准号:
    RGPIN-2016-05677
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140694
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    WBP Fellowship
Stochastic Control-Theoretic Approach to Development of Simultaneously Cyber-Secure and Energy-Efficient Randomized Transmission Methods for Dependable IoT
用于开发同时网络安全和节能的可靠物联网随机传输方法的随机控制理论方法
  • 批准号:
    20K14771
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
  • 批准号:
    530985-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding the causes of DNA methylation response to methylmercury: a novel approach to quantify genetic, environmental, and stochastic factors
了解 DNA 甲基化对甲基汞反应的原因:一种量化遗传、环境和随机因素的新方法
  • 批准号:
    10039951
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
Understanding the causes of DNA methylation response to methylmercury: a novel approach to quantify genetic, environmental, and stochastic factors
了解 DNA 甲基化对甲基汞反应的原因:一种量化遗传、环境和随机因素的新方法
  • 批准号:
    10452549
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了