Collaborative Research: FET: Small: Machine Learning Models for Function-on-Function Regression

合作研究:FET:小型:函数对函数回归的机器学习模型

基本信息

  • 批准号:
    2007418
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Large heterogeneous feature sets are quite common in biological studies such as genetic, transcriptomic, proteomic and metabolomic information and in electronic health records. The goal of personalized medicine is often to link this information to therapeutic responses. Higher accuracy prediction can assist in selecting the most desirable therapy for each individual patient. Some of the latest machine-learning tools, such as deep learning based on convolutional neural networks, have shown great promise in various areas of image-based predictive modeling but are often unsuitable for scenarios involving non-image based large feature sets that appear quite frequently in biological scenarios. The project develops a novel framework termed REFINED (REpresentation of Features as Images with NEighborhood Dependencies) to represent high-dimensional vectors as compact images that increases the accuracy of machine-learning models trained on such datasets and is able to handle heterogeneous feature set as well. Successful implementation of the innovation will assist in the goal of higher-accuracy predictive modeling from biological datasets. The developed algorithms will be made available online in a user-friendly manner. Investigators are deeply involved in educating and training the next generation of students at all levels with attention to minority and underrepresented groups.The project involves the design of a novel regression framework that can convert scalar and functional predictors into mathematically justifiable image objects that can be processed by convolutional networks based deep-learning methodologies. Preliminary results illustrated on biological datasets show the higher prediction accuracy of the framework as compared to existing methodologies while maintaining desirable properties in terms of bias. The specific project contributions involve (a) an innovative design for representation of high-dimensional scalar features as images with neighborhood dependencies that results in high accuracy predictive modeling using Convolutional Neural Network based deep learning (b) extension of the image-based representation to incorporate functional changes in predictors and outputs. The project also explores the theoretical underpinnings for this new predictive-modeling framework for biological scenarios. The framework can be applied to any biological-prediction problem where the predictors have scalar, functional and/or image attributes. The successful completion of this project will result in a new effective tool for feature representation and function-on-function regression and will be a significant methodology to perform object regression.The project is jointly funded by the Foundations of Emerging Technologies (FET) program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型异构特征集在遗传、转录组、蛋白质组和代谢组信息等生物学研究以及电子健康记录中非常常见。个性化医疗的目标通常是将这些信息与治疗反应联系起来。更准确的预测可以帮助为每个患者选择最理想的治疗方法。一些最新的机器学习工具,例如基于卷积神经网络的深度学习,在基于图像的预测建模的各个领域显示出了巨大的前景,但通常不适合涉及生物场景中频繁出现的非基于图像的大型特征集的场景。该项目开发了一种名为 REFINED(将特征表示为具有邻域依赖性的图像)的新颖框架,将高维向量表示为紧凑图像,从而提高了在此类数据集上训练的机器学习模型的准确性,并且还能够处理异构特征集。该创新的成功实施将有助于实现从生物数据集进行更高精度预测建模的目标。开发的算法将以用户友好的方式在线提供。研究人员深入参与教育和培训各个级别的下一代学生,并关注少数群体和代表性不足的群体。该项目涉及设计一种新颖的回归框架,该框架可以将标量和函数预测变量转换为数学上合理的图像对象,可以通过基于卷积网络的深度学习方法进行处理。生物数据集上的初步结果表明,与现有方法相比,该框架具有更高的预测准确性,同时在偏差方面保持了理想的特性。 具体项目贡献包括 (a) 将高维标量特征表示为具有邻域依赖关系的图像的创新设计,从而使用基于卷积神经网络的深度学习进行高精度预测建模 (b) 基于图像的表示的扩展,以纳入预测变量和输出中的功能变化。该项目还探索了这种新的生物场景预测建模框架的理论基础。该框架可应用于预测变量具有标量、函数和/或图像属性的任何生物预测问题。该项目的成功完成将为特征表示和功能对功能回归带来一种新的有效工具,并将成为执行对象回归的重要方法。该项目由新兴技术基金会(FET)计划和刺激竞争性研究既定计划(EPSCoR)共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持。 审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Modified Neighborhood Hypothesis Test for Population Mean in Functional Data
函数数据中总体均值的修正邻域假设检验
  • DOI:
    10.1007/s13253-023-00549-y
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bandara, Dhanamalee;Ellingson, Leif;Ghosh, Souparno;Pal, Ranadip
  • 通讯作者:
    Pal, Ranadip
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Souparno Ghosh其他文献

Spatio-temporal models of infectious disease with high rates of asymptomatic transmission
高无症状传播率的传染病时空模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aminur Rahman;A. Peace;Ramesh Kesawan;Souparno Ghosh
  • 通讯作者:
    Souparno Ghosh
Scaling Integral Projection Models for Analyzing Size Demography
用于分析规模人口统计的缩放积分投影模型
  • DOI:
    10.1214/13-sts444
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    A. Gelfand;Souparno Ghosh;J. Clark
  • 通讯作者:
    J. Clark
Joint Modeling of Climate Niches for Adult and Juvenile Trees
成年树和幼树气候生态位的联合建模
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Souparno Ghosh;K. Zhu;A. Gelfand;J. Clark
  • 通讯作者:
    J. Clark
Perceived neighborhood: Preferences versus actualities
感知的邻里:偏好与现实
Anchors of Social Network Awareness Index: A Key to Modeling Postdisaster Housing Recovery
社交网络意识指数的锚点:灾后住房恢复建模的关键
  • DOI:
    10.1061/(asce)is.1943-555x.0000471
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Nejat;Saeed Moradi;Souparno Ghosh
  • 通讯作者:
    Souparno Ghosh

Souparno Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
  • 批准号:
    2307573
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
  • 批准号:
    2312755
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了