Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
基本信息
- 批准号:2312884
- 负责人:
- 金额:$ 26.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of artificial intelligence (AI) has recently made significant strides, with notable advancements such as large language models like ChatGPT taking the world by storm. However, these breakthroughs would not have been possible without the availability of powerful computing hardware, such as graphics processing units (GPUs). Such hardware has benefited from several decades of technology scaling following Moore's law. As technology approaches its physical limits and AI models require exponentially increasing hardware resources, including computation and storage, alternative computing paradigms with superior energy efficiency and performance are necessary for a sustainable future. Compute-in-memory is one promising approach where computations are directly performed in memory units, eliminating most data movements, a key bottleneck in conventional computers. However, to best exploit the compute-in-memory for acceleration of AI models on the scale of giga-byte to tera-byte levels, it is critical to have high capacity, energy-efficient, and high performance memory technology to fit the models. NAND memory is a form of erasable programmable read-only memory that takes its name from the not-and (NAND) logic gate. The proposed research aims to develop ferroelectric vertical NAND memory to meet these demands and at the same time train students for developing a future workforce for the semiconductor industry.Vertical NAND memory offers the highest density by increasing the number of stacked layers vertically. However, conventional vertical NAND memory based on floating gate or charge trap flash suffers from poor performance, including high write voltage, low speed, and poor endurance, despite their large capacity. To address these issues, this research proposes the development of a vertical NAND flash alternative: the vertical NAND ferroelectric field-effect transistor (FeFET), which achieves high density and high performance simultaneously. By leveraging the recently discovered ferroelectric HfO2, superior performance can be achieved as ferroelectric programming is driven by an applied electric field, which can be energy-efficient and fast. The project aims to design and evaluate vertical NAND FeFET-based compute-in-memory accelerators from devices to architectures, with innovations such as novel cell designs to achieve multi-level cell and variation suppression, vertical NAND array disturb mitigation with a novel array structure, and mapping and benchmarking of various important information processing tasks to the vertical NAND FeFET array. Additionally, this research includes workforce training activities such as lectures and hands-on experience offered to K-12 students and teachers to promote excitement and attract them to the talent pipeline for the semiconductor industry. The proposed research will recruit graduate and undergraduate students via the Research Experience for Undergraduates (REU) program from underrepresented groups, and the knowledge acquired in this project will be distributed through curriculum development and online sharing repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)领域最近取得了重大进展,诸如ChatGPT等大型语言模型的显着进步席卷了世界。然而,如果没有强大的计算硬件,如图形处理单元(GPU),这些突破是不可能的。这种硬件得益于几十年来遵循摩尔定律的技术扩展。随着技术接近其物理极限,人工智能模型需要呈指数级增长的硬件资源,包括计算和存储,具有上级能效和性能的替代计算模式对于可持续的未来是必要的。内存计算是一种很有前途的方法,其中计算直接在内存单元中执行,消除了大多数数据移动,这是传统计算机的关键瓶颈。然而,为了最好地利用内存计算来加速千兆字节到兆字节级别的AI模型,拥有高容量,高能效和高性能的内存技术来适应模型至关重要。NAND存储器是可擦除可编程只读存储器的一种形式,其名称来自非与(NAND)逻辑门。该研究旨在开发铁电垂直NAND存储器,以满足这些需求,同时培养学生为半导体行业培养未来的劳动力。垂直NAND存储器通过增加垂直堆叠层的数量提供最高的密度。然而,基于浮栅或电荷捕获闪存的传统垂直NAND存储器尽管容量大,但性能差,包括高写入电压、低速度和差的耐久性。为了解决这些问题,本研究提出了一种垂直NAND闪存替代方案的开发:垂直NAND铁电场效应晶体管(FeFET),它同时实现了高密度和高性能。通过利用最近发现的铁电HfO 2,可以实现上级性能,因为铁电编程是由所施加的电场驱动的,这可以是能量高效且快速的。该项目旨在设计和评估从器件到架构的基于垂直NAND FeFET的内存计算加速器,其创新包括实现多级单元和变化抑制的新型单元设计,采用新型阵列结构减轻垂直NAND阵列干扰,以及将各种重要信息处理任务映射和基准测试到垂直NAND FeFET阵列。此外,这项研究还包括劳动力培训活动,如为K-12学生和教师提供的讲座和实践经验,以促进兴奋并吸引他们进入半导体行业的人才管道。该研究计划将通过本科生研究经验(REU)计划从代表性不足的群体中招募研究生和本科生,并将在该项目中获得的知识通过课程开发和在线共享库进行分发。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kai Ni其他文献
3-D electro-sonic flow focusing ionization microfluidic chip for massspectrometry
用于质谱分析的 3-D 电声流聚焦电离微流控芯片
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.4
- 作者:
Yan Chen;Quan Yu;Kai Ni;Xiaohao Wang - 通讯作者:
Xiaohao Wang
MP76-02 SPERM PROTAMINE MRNA RATIO AND DNA FRAGMENTATION INDEX REPRESENT RELIABLE CLINICAL BIOMARKERS FOR MEN WITH VARICOCELE AFTER MICROSURGICAL VARICOCELE LIGATION
- DOI:
10.1016/j.juro.2015.02.2787 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Kai Ni;Klaus Steger;Hao Yang;Hongxiang Wang;Kai Hu;Bin Chen - 通讯作者:
Bin Chen
span style=line-height:15px;Effect of confinement on glass dynamics and free volume in immisciblePS/PE blends/span
限制对不混溶 PS/PE 共混物中玻璃动力学和自由体积的影响
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.2
- 作者:
Lingyun Wu;Jingjun Zhu;Xia Liao;Kai Ni;Qiongwen Zhang;Zhu An;Qi Yang;Guangxian Li - 通讯作者:
Guangxian Li
Ferroelectric compute-in-memory annealer for combinatorial optimization problems
用于组合优化问题的铁电内存计算退火器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:16.6
- 作者:
Xunzhao Yin;Yu Qian;Alptekin Vardar;Marcel Günther;F. Müller;N. Laleni;Zijian Zhao;Zhouhang Jiang;Zhiguo Shi;Yiyu Shi;Xiao Gong;Cheng Zhuo;Thomas Kämpfe;Kai Ni - 通讯作者:
Kai Ni
Preliminarily investigating the promotion mechanism for the electrical and optical performance of transparent electrode with ITO/CuAg/Ag/ITO structure
初步探究具有ITO/CuAg/Ag/ITO结构的透明电极电学和光学性能的提升机制
- DOI:
10.1016/j.apsusc.2025.163758 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:6.900
- 作者:
Tingting Yao;Kai Ni;Wei Wang;Yong Yang;Yuji Hao;Hualin Wang;Weiwei Jiang;Shimin Liu;Cunlei Zou;Wanyu Ding - 通讯作者:
Wanyu Ding
Kai Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kai Ni', 18)}}的其他基金
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2404874 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2344819 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
CAREER: High-Performance Ferroelectric Memory for In-Memory Computing
职业:用于内存计算的高性能铁电存储器
- 批准号:
2346953 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Continuing Grant
CAREER: High-Performance Ferroelectric Memory for In-Memory Computing
职业:用于内存计算的高性能铁电存储器
- 批准号:
2239284 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Continuing Grant
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2318808 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2212240 - 财政年份:2022
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
相似国自然基金
大功率p-FET器件与逻辑芯片架构方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
双层石墨烯纳米带阵列的微纳限域低温合成及全碳FET器件研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
离子辐照精准调控SnS2栅极敏感材料缺陷密度增强碳基FET型气体传感器性能的研究
- 批准号:12305330
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Nb2O5/MoSe2-FET器件的室温氢敏性能与特异性增敏机理研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
电池状态监测用可植入式碳基FET传感器及电池失效机制研究
- 批准号:2023JJ20036
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
GaN p-FET 源、漏极欧姆接触机理研究及器件验证
- 批准号:n/a
- 批准年份:2023
- 资助金额:30.0 万元
- 项目类别:省市级项目
石墨烯等离激元增强光纤微FET监测类器官标志物及其机理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于平面浮栅FET及脉冲电场传感调控的室温氢气传感研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光子激活的钯金属超材料栅极敏化FET型室温氢气传感器制备与研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
- 批准号:
2312755 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2344819 - 财政年份:2023
- 资助金额:
$ 26.8万 - 项目类别:
Standard Grant