Stability and Dynamics of Invasion Fronts in Spatially Extended Systems
空间扩展系统中入侵前沿的稳定性和动力学
基本信息
- 批准号:2007759
- 负责人:
- 金额:$ 25.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the development of mathematical techniques to predict and explain features of front propagation into unstable states with applications in physics, biology and chemistry. Unstable states arise frequently in applied problems as system parameters are changed or new species are introduced into the problem. The subsequent dynamics are often dominated by the formation of moving interfaces called invasion fronts that propagate into the unstable state at fixed speed and select some secondary state in their wake. This proposal is built around expanding knowledge of these processes with a specific goal of elucidating mechanisms leading to the emergence of invasion fronts and then leveraging this knowledge to make predictions in actual systems of interest. One portion of this work will develop new mathematical approaches to study the effect of localized forcing on the spreading speed of interfaces in partial differential equation (PDE) models. The second portion will develop predictions and general principles for the dynamics of instabilities spreading over complex networks. Two complementary avenues of research are proposed. One area of proposed work concerns stability of invasion fronts with a focus on understanding the role of external forcing in the selection of the inter-facial velocity and subsequent dynamics. Since invasion fronts propagate into unstable states, stability analysis requires perturbations of these fronts to be sufficiently localized. This proposal will study problems where the forcing function is also localized, but not sufficiently localized to fit into the stability framework of the homogeneous equation. Success in carrying out the projects described will lead to new mathematical approaches to the study of stability of traveling waves and will clarify and explain some novel phenomena that will be of interest to researchers working in applied problems. A second area of proposed work concerns invasion fronts where space is taken to be a complex network with local dynamics occurring at each node with coupling between nodes via a graph Laplacian. The goal here is to leverage knowledge of front propagation in the PDE setting to make concrete predictions related to the spread of instabilities over networks. Applications include the spread of global epidemics and that of invasive species in discrete environments. Successful completion of this work will provide researchers working in this area with new tools to estimate arrival times, provide a rigorous theoretical framework by which to understand these spreading phenomena and provide insight into the way features of complex networks influence arrival times of invasions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及到数学技术的发展,以预测和解释前沿传播到不稳定状态的特征,并在物理、生物和化学中得到应用。随着系统参数的改变或新物种的引入,在应用问题中经常会出现不稳定状态。随后的动力学通常由称为入侵前锋的移动界面的形成所主导,这些界面以固定的速度传播到不稳定状态,并在它们的尾流中选择一些次要状态。这一建议是建立在扩大这些过程的知识基础上的,具体目标是阐明导致入侵前线出现的机制,然后利用这些知识在实际感兴趣的系统中做出预测。这项工作的一部分将发展新的数学方法来研究局部强迫对偏微分方程(PDE)模型中界面传播速度的影响。第二部分将为在复杂网络上传播的不稳定性的动力学发展预测和一般原理。提出了两条互补的研究途径。拟议工作的一个领域涉及入侵前锋的稳定性,重点是了解外部强迫在选择界面速度和随后的动力学中的作用。由于入侵前锋传播到不稳定状态,稳定性分析要求这些前锋的扰动充分局部化。这一建议将研究强迫函数也是局部化的,但不是足够局部化的问题,以适应齐次方程的稳定性框架。上述项目的成功实施将为行波稳定性的研究带来新的数学方法,并将澄清和解释一些新的现象,这将是从事应用问题的研究人员感兴趣的。第二个拟议的工作领域涉及入侵前沿,其中空间被视为一个复杂的网络,其局部动态发生在每个节点上,节点之间通过图拉普拉斯耦合。这里的目标是利用PDE设置中的前沿传播知识来做出与网络上不稳定传播相关的具体预测。应用包括全球流行病的传播和离散环境中的入侵物种的传播。这项工作的成功完成将为这一领域的研究人员提供新的工具来估计到达时间,提供一个严格的理论框架来理解这些传播现象,并深入了解复杂网络的特征如何影响入侵的到达时间。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Locked fronts in a discrete time discrete space population model
离散时间离散空间总体模型中的锁定前沿
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.9
- 作者:Holzer, Matt;Richey, Zachary;Rush, Wyatt;Schmidgall, Samuel
- 通讯作者:Schmidgall, Samuel
Epidemic Spreading on Complex Networks as Front Propagation into an Unstable State
- DOI:10.1007/s11538-022-01110-7
- 发表时间:2021-09
- 期刊:
- 影响因子:3.5
- 作者:A. Armbruster;Matt Holzer;Noah Roselli;Lena Underwood
- 通讯作者:A. Armbruster;Matt Holzer;Noah Roselli;Lena Underwood
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matt Holzer其他文献
Estimating epidemic arrival times using linear spreading theory.
使用线性传播理论估计流行病到达时间。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.9
- 作者:
L. M. Chen;Matt Holzer;A. Shapiro - 通讯作者:
A. Shapiro
Pattern Formation in Random Networks Using Graphons
使用图形在随机网络中形成模式
- DOI:
10.1137/21m1455875 - 发表时间:
2021 - 期刊:
- 影响因子:2
- 作者:
J. Bramburger;Matt Holzer - 通讯作者:
Matt Holzer
Linear spreading speeds from nonlinear resonant interaction
非线性共振相互作用产生的线性传播速度
- DOI:
10.1088/1361-6544/aa6c74 - 发表时间:
2016 - 期刊:
- 影响因子:1.7
- 作者:
Grégory Faye;Matt Holzer;A. Scheel - 通讯作者:
A. Scheel
Analysis of a Renormalization Group Method for Solving Perturbed Ordinary Dieren tial Equations
求解扰动常微分方程的重正化群法分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
A. Harkin;Matt Holzer;T. Kaper - 通讯作者:
T. Kaper
Attractor reconstruction from interspike intervals is incomplete
尖峰间期的吸引子重建不完整
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Tomáš Gedeon;Matt Holzer;M. Pernarowski - 通讯作者:
M. Pernarowski
Matt Holzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matt Holzer', 18)}}的其他基金
Nonlinear Dynamics of Pattern Forming Invasion Fronts
模式形成入侵前沿的非线性动力学
- 批准号:
1516155 - 财政年份:2015
- 资助金额:
$ 25.28万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Identifying Ecosystem Properties Promoting Stability and Resistance: Modeling Late Ordovician Paleocommunity Dynamics and Functioning Across the Richmondian Invasion
职业:识别生态系统特性,促进稳定性和抵抗力:模拟晚奥陶世古群落动态和里士满入侵期间的功能
- 批准号:
2246395 - 财政年份:2022
- 资助金额:
$ 25.28万 - 项目类别:
Continuing Grant
CAREER: Unraveling post-invasion dynamics of the amphibian-killing fungus via rapid genetic diversity assessments of both hosts and pathogens
职业:通过对宿主和病原体的快速遗传多样性评估,揭示杀死两栖动物的真菌的入侵后动态
- 批准号:
2041629 - 财政年份:2021
- 资助金额:
$ 25.28万 - 项目类别:
Continuing Grant
Dynamics of invasion and evolution in the gut microbiota
肠道微生物群的入侵和进化动态
- 批准号:
560601-2020 - 财政年份:2020
- 资助金额:
$ 25.28万 - 项目类别:
University Undergraduate Student Research Awards
OPUS: CRS Synthesizing long-term data to forecast native understory plant community structure & dynamics with invasion--species interactions, abiotic change & physiology
OPUS:CRS 综合长期数据来预测本地林下植物群落结构
- 批准号:
1950466 - 财政年份:2020
- 资助金额:
$ 25.28万 - 项目类别:
Standard Grant
CAREER: Identifying Ecosystem Properties Promoting Stability and Resistance: Modeling Late Ordovician Paleocommunity Dynamics and Functioning Across the Richmondian Invasion
职业:识别生态系统特性,促进稳定性和抵抗力:模拟晚奥陶世古群落动态和里士满入侵期间的功能
- 批准号:
1848232 - 财政年份:2019
- 资助金额:
$ 25.28万 - 项目类别:
Continuing Grant
Visualization of spatiotemporal dynamics of human glioma stem cell invasion and iPSC-derived neural stem cell
人胶质瘤干细胞侵袭和 iPSC 衍生神经干细胞的时空动态可视化
- 批准号:
19K16779 - 财政年份:2019
- 资助金额:
$ 25.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Functional landscape connectivity and the dynamics of parasite invasion
功能景观连通性和寄生虫入侵的动态
- 批准号:
RGPIN-2014-03793 - 财政年份:2019
- 资助金额:
$ 25.28万 - 项目类别:
Discovery Grants Program - Individual
Defining invasion dynamics of GBM reveals axon guidance genes drive invasion
定义 GBM 的侵袭动力学揭示轴突引导基因驱动侵袭
- 批准号:
10219201 - 财政年份:2019
- 资助金额:
$ 25.28万 - 项目类别:
Defining invasion dynamics of GBM reveals axon guidance genes drive invasion
定义 GBM 的侵袭动力学揭示轴突引导基因驱动侵袭
- 批准号:
9974991 - 财政年份:2019
- 资助金额:
$ 25.28万 - 项目类别:














{{item.name}}会员




