Collaborative Research: RI: Small: Wisdom of Crowds with Machines in the Loop

合作研究:RI:小型:循环中机器的群体智慧

基本信息

  • 批准号:
    2007887
  • 负责人:
  • 金额:
    $ 23.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The importance of both human and machine intelligence and their complementarity has given rise to the aspiration for human-machine hybrid computing systems that achieve more than either could alone. Human-in-the-loop computing, where human inputs are sought during the computation process, is a natural approach. However, most human-in-the-loop computing systems focus on how simple human inputs can help machines to better perform their tasks. This research takes the opposite perspective by focusing on a human-centered domain---the wisdom of crowds---and studies how having machines in the loop can improve the efficacy of harnessing the wisdom of crowds. A key challenge is directly evaluating the quality of crowd contributions. This research tackles the problem of obtaining high-quality contributions from the crowd despite the lack of data for such evaluations. This project seeks to make more accurate and robust use of crowd contributions in a broad spectrum of applications in business (e.g. crowd transcription and translation, and online reviews), sciences (e.g. citizen sciences, machine learning, and peer reviews for conferences and journals), education (e.g. peer grading) and other areas. This research investigates two core problems for tapping into the wisdom of crowds in the challenging, yet realistic, non-verification and unsupervised setting where no ground truth is available, addressing two key research questions: (1) how to elicit high-quality information from (potentially strategic) crowd members; and (2) how to aggregate the elicited information to form a high-quality, collective opinion. Lack of verification via ground truth presents a challenge for the mechanism designer to align incentives for elicitation. It also means that the designer does not know whose information should be weighted higher in aggregation given heterogeneous contributions. This research develops a theoretically grounded framework for elicitation and aggregation for settings without verification. It incorporates machine learning methods for the design of elicitation and aggregation mechanisms to achieve provable guarantees for the crowdsourcing applications, with a focus on the quality of elicited information and the quality of the aggregated opinion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类和机器智能的重要性以及它们的互补性已经引起了人们对人机混合计算系统的渴望,这种系统比任何一方单独实现的都要多。人在循环计算,即在计算过程中寻找人的输入,是一种自然的方法。然而,大多数人在循环计算系统关注的是简单的人类输入如何帮助机器更好地执行任务。这项研究采取了相反的观点,专注于以人为中心的领域——群体智慧——并研究了让机器参与其中如何提高利用群体智慧的效率。一个关键的挑战是直接评估群众贡献的质量。本研究解决了在缺乏此类评估数据的情况下从人群中获得高质量贡献的问题。该项目旨在在商业(如群体转录和翻译、在线评论)、科学(如公民科学、机器学习、会议和期刊的同行评议)、教育(如同行评分)和其他领域的广泛应用中更准确、更有力地利用群体贡献。本研究探讨了在具有挑战性的、现实的、无验证和无监督的、没有基础真理的环境中挖掘群体智慧的两个核心问题,解决了两个关键的研究问题:(1)如何从(潜在的)群体成员那里获得高质量的信息;(2)如何将收集到的信息聚合起来,形成高质量的集体意见。缺乏通过实际事实的验证对机制设计者提出了挑战,使激励机制与启发机制保持一致。这也意味着设计师不知道在给定异构贡献的聚合中,谁的信息应该权重更高。本研究开发了一个理论基础的框架,用于未经验证的设置的启发和聚合。它结合了机器学习方法来设计引出和聚合机制,以实现众包应用程序的可证明保证,重点是引出信息的质量和聚合意见的质量。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surrogate Scoring Rules
替代评分规则
The Limits of Multi-task Peer Prediction
多任务同行预测的局限性
Learning Strategy-Aware Linear Classifiers
学习策略感知线性分类器
Sample Complexity of Forecast Aggregation
  • DOI:
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tao Lin;Yiling Chen
  • 通讯作者:
    Tao Lin;Yiling Chen
Optimal Advertising for Information Products
信息产品优化广告
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiling Chen其他文献

Delivery of DNA octahedra enhanced by focused ultrasound with microbubbles for glioma therapy
通过微泡聚焦超声增强 DNA 八面体的递送用于神经胶质瘤治疗
  • DOI:
    10.1016/j.jconrel.2022.08.019
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Yuanyuan Shen;Mengni Hu;Wen Li;Yiling Chen;Yiluo Xu;Litao Sun;Dongzhe Liu;Siping Chen;Yueqing Gu;Yi Ma;Xin Chen
  • 通讯作者:
    Xin Chen
PREDICTING UNCERTAIN OUTCOMES USING INFORMATION MARKETS: TRADER BEHAVIOR AND INFORMATION AGGREGATION
使用信息市场预测不确定结果:交易者行为和信息聚合
Cursed yet Satisfied Agents
被诅咒但满意的特工
  • DOI:
    10.4230/lipics.itcs.2022.44
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiling Chen;Alon Eden;Juntao Wang
  • 通讯作者:
    Juntao Wang
Simultaneous-Fault Diagnosis of Satellite Power System Based on Fuzzy Neighborhood ζ-Decision-Theoretic Rough Set
基于模糊邻域γ决策理论粗糙集的卫星电力系统同步故障诊断
  • DOI:
    10.3390/math10193414
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Laifa Tao;Chao Wang;Yuan Jia;Ruzhi Zhou;Tong Zhang;Yiling Chen;Chen Lu;Mingliang Suo
  • 通讯作者:
    Mingliang Suo
Activation of anti-tumor immune response by ablation of HCC with nanosecond pulsed electric field (nsPEF)

Yiling Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiling Chen', 18)}}的其他基金

FAI: A Normative Economic Approach to Fairness in AI
FAI:人工智能公平的规范经济方法
  • 批准号:
    2147187
  • 财政年份:
    2022
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
AF: Small: Learning and Optimization with Strategic Data Sources
AF:小型:利用战略数据源进行学习和优化
  • 批准号:
    1718549
  • 财政年份:
    2017
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
CAREER: Foundataions of Markets as Information Aggregation Mechanisms
职业:市场作为信息聚合机制的基础
  • 批准号:
    0953516
  • 财政年份:
    2010
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 23.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了