Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs

合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络

基本信息

  • 批准号:
    2008447
  • 负责人:
  • 金额:
    $ 33.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

Unmanned aerial vehicle-aided networks have been widely recognized by both cellular and internet industry and academia as an emerging technique to enhance current networking infrastructure. The research objective of this project is to design, analyze, and evaluate AirEdge, which is an innovative robust 3D airborne computing and networking system that exploits a swarm of aerial mobile radio access points and edge servers carried or deployed by unmanned aerial vehicles. The unique feature of AirEdge is to enable fast-deployable highly efficient on-demand edge computing and networking services. AirEdge will enable a series of applications in the areas of disaster rescue, public safety, anti-terrorism, battlefield assistance, and mobile entertainment. For example, AirEdge can be rapidly deployed to the area impacted by the disaster and allows first responders to locate and identify injured people using face recognition and provide their corresponding health information for first aids. This project also fosters interdisciplinary research and provides a unique training program for undergraduate and graduate students.This project aims to realize AirEdge through the communication-motion co-design principles for 3D airborne networking and communication-computation co-design principles to enable reliable and energy-efficient airborne edge computing. Toward this end, two fundamental research problems are investigated: 1) how to dynamically establish edge computing networks to enable flexible edge computing and 2) how to integrate dynamic computing resource deployments with the communication network provided by unmanned aerial vehicle (UAVs) to enable low-latency and high-performance edge computing on resource-constrained computing platforms. To address these problems, 1) a new edge-assisted optimal motion control scheme is designed to exploit the abundant computation power of the ground edge server and high-fidelity ray-tracing simulations to perform site-specific Air-to-Ground channel modeling; 2) a new energy-efficient motion planning strategy is developed for the UAV swarm with an objective to simultaneously enhance the area spectral efficiency of the entire serving site and satisfy the time-varying data rate requirements of the edge computing applications; 3) a novel multi-agent actor-critic (MA-AC) reinforcement learning method is developed to realize a more adaptive and robust model-free control scheme under the uncertainties of the deployment environment; 4) a new context-aware adaptive edge computing deployment solution is designed to optimally integrate the airborne edge computing with the airborne communication network; 5) a novel dynamic edge analytics framework is engineered for the airborne communication and computing. The framework leverages approximate computing to mitigate the tradeoff between computation quality, service latency, and energy efficiency in AirEdge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无人机辅助网络已被蜂窝和互联网行业和学术界广泛认可为增强当前网络基础设施的新兴技术。该项目的研究目标是设计,分析和评估AirEdge,这是一种创新的强大的3D机载计算和网络系统,利用无人机携带或部署的大量空中移动的无线电接入点和边缘服务器。AirEdge的独特功能是实现可快速部署的高效按需边缘计算和网络服务。AirEdge将在灾难救援、公共安全、反恐、战场援助和移动的娱乐等领域实现一系列应用。例如,AirEdge可以快速部署到受灾害影响的地区,并允许急救人员使用面部识别来定位和识别受伤人员,并提供相应的急救健康信息。该项目还促进跨学科研究,并为本科生和研究生提供独特的培训计划。该项目旨在通过3D机载网络的通信-运动协同设计原则和通信-计算协同设计原则实现AirEdge,以实现可靠和节能的机载边缘计算。为此,研究了两个基本研究问题:1)如何动态建立边缘计算网络以实现灵活的边缘计算; 2)如何将动态计算资源部署与无人机(UAV)提供的通信网络集成,以在资源受限的计算平台上实现低延迟和高性能的边缘计算。为了解决这些问题,1)设计了一种新的边缘辅助最优运动控制方案,以利用地面边缘服务器的强大计算能力和高保真光线跟踪仿真来执行特定场地的空对地信道建模; 2)新能源-提出了一种有效的无人机群运动规划策略,其目标是同时提高整个服务站点的区域频谱效率,3)提出了一种新的多智能体行动者-批评者(MA-AC)强化学习方法,以实现部署环境不确定性下的自适应和鲁棒性更强的无模型控制方案;(4)新的背景-提出了一种基于感知的自适应边缘计算部署方案,实现了机载边缘计算与机载通信网络的最佳集成; 5)设计了一种新的机载通信和计算动态边缘分析框架。该框架利用近似计算来减轻AirEdge中计算质量、服务延迟和能源效率之间的权衡。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EdgeSlice: Slicing Wireless Edge Computing Network with Decentralized Deep Reinforcement Learning
Toward Scalable and Robust AIoT via Decentralized Federated Learning
通过去中心化联合学习实现可扩展且强大的 AIoT
  • DOI:
    10.1109/iotm.006.2100216
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pinyoanuntapong, Pinyarash;Huff, Wesley Houston;Lee, Minwoo;Chen, Chen;Wang, Pu
  • 通讯作者:
    Wang, Pu
DeepMix: mobility-aware, lightweight, and hybrid 3D object detection for headsets
Dystri: A Dynamic Inference based Distributed DNN Service Framework on Edge
Sim-to-Real Transfer in Multi-agent Reinforcement Networking for Federated Edge Computing
  • DOI:
    10.1145/3453142.3491419
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pinyarash Pinyoanuntapong;Tagore Pothuneedi;Ravikumar Balakrishnan;Minwoo Lee;Chen Chen-Chen;Pu Wang
  • 通讯作者:
    Pinyarash Pinyoanuntapong;Tagore Pothuneedi;Ravikumar Balakrishnan;Minwoo Lee;Chen Chen-Chen;Pu Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Han其他文献

Spray-Drying Synthesis of Ball-Like ZnO Assembly Composed of ZnO Nanoparticles for Highly Efficient Photocatalysis
喷雾干燥法合成由 ZnO 纳米颗粒组成的球状 ZnO 组装体,用于高效光催化
Degradation of micropollutants in flow-through UV/chlorine reactors: Kinetics, mechanism, energy requirement and toxicity evaluation
流通式紫外线/氯反应器中微污染物的降解:动力学、机理、能量需求和毒性评估
  • DOI:
    10.1016/j.chemosphere.2022.135890
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Tao Han;Wentao Li;Jin Li;Luyao Jia;Hui Wang;Zhimin Qiang
  • 通讯作者:
    Zhimin Qiang
High-order harmonic generation from periodic potentials with different initial states
由具有不同初始状态的周期性电势产生高次谐波
  • DOI:
    10.1209/0295-5075/128/54006
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xue-Fei Pan;Bo Li;Tao Han;Jun Zhang;Xue-Shen Liu
  • 通讯作者:
    Xue-Shen Liu
Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles
基于金纳米粒子模拟过氧化物酶催化活性的比色检测牛奶中的链霉素
  • DOI:
    10.1039/c7ra06434a
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhao Jing;Wu Yuangen;Tao Han;Chen Huayun;Yang Wenping;Qiu Shuyi
  • 通讯作者:
    Qiu Shuyi
The effect of ryegrass and fertilizer on the petroleum contaminated soil remediation
黑麦草与肥料对石油污染土壤的修复效果

Tao Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Han', 18)}}的其他基金

Proposal for Support of the Annual Phenomenology Symposium at the University of Pittsburgh: 2022-2024
支持匹兹堡大学年度现象学研讨会的提案:2022-2024
  • 批准号:
    2222878
  • 财政年份:
    2022
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
  • 批准号:
    2147821
  • 财政年份:
    2021
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
  • 批准号:
    2147624
  • 财政年份:
    2021
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Continuing Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
  • 批准号:
    2049875
  • 财政年份:
    2021
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs
合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络
  • 批准号:
    2147623
  • 财政年份:
    2021
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
  • 批准号:
    2153693
  • 财政年份:
    2021
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
  • 批准号:
    2047655
  • 财政年份:
    2021
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Continuing Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
  • 批准号:
    1910844
  • 财政年份:
    2019
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Proposal for Support of the Annual Phenomenology Symposia at the University of Pittsburgh
支持匹兹堡大学年度现象学研讨会的提案
  • 批准号:
    1723889
  • 财政年份:
    2017
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Annual Phenomenology Symposia will held May 5-7, 2014 at the University of Pittsburgh in Pittsburgh, PA.
年度现象学研讨会将于 2014 年 5 月 5 日至 7 日在宾夕法尼亚州匹兹堡的匹兹堡大学举行。
  • 批准号:
    1417115
  • 财政年份:
    2014
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 33.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了