CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
基本信息
- 批准号:2147624
- 负责人:
- 金额:$ 44.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The next-generation wireless technology promises advanced network capabilities with extremely high bandwidth and ultra-low latency that will catalyze a wide range of new mobile services and customer applications in vertical sectors such as transport, media, and manufacturing. The explosion of networking connections and the diversification of network services will dramatically increase the complexity of network management. This CAREER project aims to develop domain-specific deep reinforcement learning (DRL) methods and systems to automate the configuration, provisioning, and orchestration of network resources and services in next-generation wireless edge computing networks. The successful completion of this CAREER project will advance the understanding of the inherent relationships among DRL, communications, computing, and networking and lay a solid foundation for studying learning-based algorithms and systems for network automation in wireless edge computing. Besides, the technologies developed in the project will significantly reduce the operational cost of wireless networks and thus allow affordable high-performance wireless connectivity for all communities including low-income and remote communities. Moreover, the project provides interdisciplinary education to cultivate next-generation engineers and researchers who master both advanced wireless and Artificial Intelligence (AI) technologies via the integration of research into education and industrial-academic and cross-disciplinary collaborations.This CAREER project aims to develop deep reinforcement learning (DRL) methods and systems that automate end-to-end resource orchestration in wireless edge computing networks. Toward this end, two fundamental research problems are investigated: 1) how to design domain-specific DRL that can effectively solve end-to-end orchestration problems in large-scale wireless edge computing networks and 2) how to efficiently deploy DRL-based orchestration solutions in large-scale networking systems. To solve the first problem, the project studies the design of states, reward functions, training algorithms, and neural networks of domain-specific DRL, develops methods of handling various constraints in DRL-based end-to-end resource orchestration to avoid constraint violations, and designs context-aware multi-agent DRL methods to leverage domain knowledge of wireless edge computing to improve the learning efficiency of DRL. To solve the second problem, this project develops policy distillation methods to address the DRL deployment issues caused by the divergence between network simulations and real network systems, and designs cross-scale knowledge transfer methods to address the DRL deployment issues caused by the mismatch of the dimensions of small-scale testbeds and large-scale wireless edge computing systems. The project also develops an augmented network simulator and an edge computing system prototype for evaluating DRL-based end-to-end orchestration solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代无线技术承诺提供具有极高带宽和超低延迟的高级网络功能,这将促进运输、媒体和制造等垂直行业的广泛新移动的服务和客户应用。网络连接的爆炸式增长和网络服务的多样化将大大增加网络管理的复杂性。该CAREER项目旨在开发特定领域的深度强化学习(DRL)方法和系统,以自动配置,配置和编排下一代无线边缘计算网络中的网络资源和服务。该CAREER项目的成功完成将促进对DRL,通信,计算和网络之间内在关系的理解,并为研究基于学习的算法和系统奠定坚实的基础,用于无线边缘计算中的网络自动化。此外,该项目开发的技术将大大降低无线网络的运营成本,从而为所有社区,包括低收入和偏远社区提供负担得起的高性能无线连接。此外,该项目还提供跨学科教育,通过将研究融入教育以及产学和跨学科合作,培养掌握先进无线和人工智能(AI)技术的下一代工程师和研究人员。该CAREER项目旨在开发深度强化学习(DRL)方法和系统,以自动化无线边缘计算网络中的端到端资源编排。为此,研究了两个基本研究问题:1)如何设计特定于域的DRL,以有效地解决大规模无线边缘计算网络中的端到端编排问题; 2)如何在大规模网络系统中有效地部署基于DRL的编排解决方案。为了解决第一个问题,该项目研究了特定领域DRL的状态,奖励函数,训练算法和神经网络的设计,开发了基于DRL的端到端资源编排中处理各种约束的方法,以避免约束违反,并设计了上下文感知的多代理DRL方法,以利用无线边缘计算的领域知识来提高DRL的学习效率。针对第二个问题,本项目开发策略蒸馏方法,以解决网络模拟和真实的网络系统之间的差异所导致的DRL部署问题,并设计跨尺度知识转移方法,以解决小规模测试床和大规模无线边缘计算系统的维度不匹配所导致的DRL部署问题。该项目还开发了一个增强网络模拟器和一个边缘计算系统原型,用于评估基于DRL的端到端编排解决方案。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Secure and Intelligent Network Slicing for 5G Networks
迈向 5G 网络安全、智能的网络切片
- DOI:10.1109/ojcs.2022.3161933
- 发表时间:2022
- 期刊:
- 影响因子:5.9
- 作者:Salahdine, Fatima;Liu, Qiang;Han, Tao
- 通讯作者:Han, Tao
Deep Reinforcement Learning for End-to-End Network Slicing: Challenges and Solutions
用于端到端网络切片的深度强化学习:挑战和解决方案
- DOI:10.1109/mnet.113.2100739
- 发表时间:2022
- 期刊:
- 影响因子:9.3
- 作者:Liu, Qiang;Choi, Nakjung;Han, Tao
- 通讯作者:Han, Tao
MetaStream: Live Volumetric Content Capture, Creation, Delivery, and Rendering in Real Time
- DOI:10.1145/3570361.3592530
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Yongjie Guan;Xueyu Hou;Nan Wu;Bo Han;Tao Han
- 通讯作者:Yongjie Guan;Xueyu Hou;Nan Wu;Bo Han;Tao Han
Dystri: A Dynamic Inference based Distributed DNN Service Framework on Edge
- DOI:10.1145/3605573.3605598
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Xueyu Hou;Yongjie Guan;Tao Han
- 通讯作者:Xueyu Hou;Yongjie Guan;Tao Han
Atlas: automate online service configuration in network slicing
- DOI:10.1145/3555050.3569115
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Qiang Liu;Nakjung Choi;Tao Han
- 通讯作者:Qiang Liu;Nakjung Choi;Tao Han
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Han其他文献
Spray-Drying Synthesis of Ball-Like ZnO Assembly Composed of ZnO Nanoparticles for Highly Efficient Photocatalysis
喷雾干燥法合成由 ZnO 纳米颗粒组成的球状 ZnO 组装体,用于高效光催化
- DOI:
10.1166/nnl.2017.2288 - 发表时间:
2017-03 - 期刊:
- 影响因子:0
- 作者:
Congzhi Zhang;Shixiu Cao;Lingling Peng;Tao Han - 通讯作者:
Tao Han
Degradation of micropollutants in flow-through UV/chlorine reactors: Kinetics, mechanism, energy requirement and toxicity evaluation
流通式紫外线/氯反应器中微污染物的降解:动力学、机理、能量需求和毒性评估
- DOI:
10.1016/j.chemosphere.2022.135890 - 发表时间:
2022 - 期刊:
- 影响因子:8.8
- 作者:
Tao Han;Wentao Li;Jin Li;Luyao Jia;Hui Wang;Zhimin Qiang - 通讯作者:
Zhimin Qiang
High-order harmonic generation from periodic potentials with different initial states
由具有不同初始状态的周期性电势产生高次谐波
- DOI:
10.1209/0295-5075/128/54006 - 发表时间:
2020-02 - 期刊:
- 影响因子:0
- 作者:
Xue-Fei Pan;Bo Li;Tao Han;Jun Zhang;Xue-Shen Liu - 通讯作者:
Xue-Shen Liu
Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles
基于金纳米粒子模拟过氧化物酶催化活性的比色检测牛奶中的链霉素
- DOI:
10.1039/c7ra06434a - 发表时间:
2017-08 - 期刊:
- 影响因子:3.9
- 作者:
Zhao Jing;Wu Yuangen;Tao Han;Chen Huayun;Yang Wenping;Qiu Shuyi - 通讯作者:
Qiu Shuyi
The effect of ryegrass and fertilizer on the petroleum contaminated soil remediation
黑麦草与肥料对石油污染土壤的修复效果
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tao Han;Zhipeng Zhao;Yingying Wang - 通讯作者:
Yingying Wang
Tao Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Han', 18)}}的其他基金
Proposal for Support of the Annual Phenomenology Symposium at the University of Pittsburgh: 2022-2024
支持匹兹堡大学年度现象学研讨会的提案:2022-2024
- 批准号:
2222878 - 财政年份:2022
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
- 批准号:
2147821 - 财政年份:2021
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
- 批准号:
2049875 - 财政年份:2021
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs
合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络
- 批准号:
2147623 - 财政年份:2021
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
- 批准号:
2153693 - 财政年份:2021
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
- 批准号:
2047655 - 财政年份:2021
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs
合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络
- 批准号:
2008447 - 财政年份:2020
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
- 批准号:
1910844 - 财政年份:2019
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Proposal for Support of the Annual Phenomenology Symposia at the University of Pittsburgh
支持匹兹堡大学年度现象学研讨会的提案
- 批准号:
1723889 - 财政年份:2017
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
Annual Phenomenology Symposia will held May 5-7, 2014 at the University of Pittsburgh in Pittsburgh, PA.
年度现象学研讨会将于 2014 年 5 月 5 日至 7 日在宾夕法尼亚州匹兹堡的匹兹堡大学举行。
- 批准号:
1417115 - 财政年份:2014
- 资助金额:
$ 44.98万 - 项目类别:
Standard Grant
相似海外基金
CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
- 批准号:
2047655 - 财政年份:2021
- 资助金额:
$ 44.98万 - 项目类别:
Continuing Grant