NSF-BSF: CNS Core: Small: Machine Learning for Real-Time Network Rate Control
NSF-BSF:CNS 核心:小型:用于实时网络速率控制的机器学习
基本信息
- 批准号:2008971
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Any time an application uses the Internet, behind the scenes, rate control algorithms decide how quickly to transmit data. These algorithms have a critical task; sending too slowly causes delay or reduced video quality, and sending too quickly causes congestion that impacts both the sender and other users. Rate control is a persistent challenge in networking, as it has to deal with a wide range of dynamic environments while making millisecond-level decisions with limited information. This project is developing new approaches to rate control based on an area of machine learning known as reinforcement learning, leading to potential improvements in performance and functionality.At a high level, the project seeks to develop a fundamental understanding of the use of reinforcement learning for rate control, and apply that understanding to the areas of adaptive bitrate (ABR) video as commonly used in modern web-based video, and to transport layer congestion control, such as the Transmission Control Protocol (TCP). The work will begin with algorithmic foundations by exploring what level of complexity of learning algorithm (ranging from bandit algorithms to deep neural networks) is necessary to achieve high performance. Next, the project will broaden the semantics of inputs and outputs of rate control, including a scavenger rate control protocol and an improved multipath TCP. Finally, the project will use novel automated methods to improve the robustness of rate control protocols in unexpected environments.The results of this project can offer significant performance improvement for deployed protocols, which is of increasing need as modern and emerging applications have ever more demanding network requirements. For example, low latency communication and high quality real-time video are valuable for interactive conferencing, augmented and virtual reality, Internet of Things, edge computing, and more. The project also plans to provide research opportunities for underrepresented groups.The results of this project, including papers and open-source code, will be available at http://pccproject.net and at the code repository, https://github.com/PCCprojectThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每当应用程序使用Internet,在幕后,速率控制算法决定如何快速传输数据。 这些算法具有至关重要的任务;发送太慢会导致延迟或降低视频质量,并发送太快会导致交通拥堵,从而影响发件人和其他用户。 费率控制是网络中的持续挑战,因为它必须处理各种动态环境,同时以有限的信息做出毫秒级别的决策。 该项目正在开发基于称为强化学习的机器学习领域的新方法来控制速度控制,从而导致绩效和功能的潜在改善。在高水平的情况下,该项目试图发展对使用增强型学习对费率控制的使用的基本理解,并将理解应用于适应性比特(ABR)视频的领域(ABR)在现代基于Web基于网络的视频中的常用视频,以控制层和控制层的控制(例如,Contrancep Contrantion Contrantsc Consterpion Consterp)(例如Conscompesp)(例如Consporsion Conscompessp)。 这项工作将从算法基础开始,通过探索学习算法的复杂程度(从强盗算法到深神经网络)对于实现高性能是必要的。接下来,该项目将扩大输入和速率控制输出的语义,包括清除率控制协议和改进的多路径TCP。 最后,该项目将使用新颖的自动化方法来改善意外环境中利率控制协议的鲁棒性。该项目的结果可以为已部署的协议提供显着的性能改善,这是因为现代和新兴应用程序的网络需求越来越大。 例如,低延迟通信和高质量的实时视频对于交互式会议,增强和虚拟现实,物联网,边缘计算等有价值。该项目还计划为代表性不足的群体提供研究机会。该项目的结果,包括论文和开源代码,可在http://pccproject.net和代码存储库中获得,https://github.com/github.com/pccprojectthis award thisthis award the NSF的智力及其依赖的依据是依据的依据。 标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DChannel: Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels
DChannel:通过并行高带宽和低延迟通道加速移动应用程序
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sentos, W.;Chandrasekaran, B.;Godfrey, P. B.;Hassanieh, H.;Maggs, B.
- 通讯作者:Maggs, B.
Toward greater scavenger congestion control deployment: implementations and interfaces
实现更好的清道夫拥塞控制部署:实现和接口
- DOI:10.1145/3472305.3472323
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Meng, Tong;Cai, Christopher;Godfrey, Brighten;Schapira, Michael
- 通讯作者:Schapira, Michael
PCC Proteus: Scavenger Transport And Beyond
- DOI:10.1145/3387514.3405891
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Tong Meng;Neta Rozen Schiff;Brighten Godfrey;Michael Schapira
- 通讯作者:Tong Meng;Neta Rozen Schiff;Brighten Godfrey;Michael Schapira
MPCC: online learning multipath transport
- DOI:10.1145/3386367.3433030
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Tomer Gilad;Neta Rozen Schiff;Brighten Godfrey;C. Raiciu;Michael Schapira
- 通讯作者:Tomer Gilad;Neta Rozen Schiff;Brighten Godfrey;C. Raiciu;Michael Schapira
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Godfrey其他文献
Philip Godfrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Godfrey', 18)}}的其他基金
NeTS: Medium: SLATE: Service Layer Traffic Engineering
NeTS:媒介:SLATE:服务层流量工程
- 批准号:
2312714 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: The Internet at the Speed of Light
NeTS:媒介:协作研究:光速的互联网
- 批准号:
1763841 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Medium: From Verification to Synthesis in Software Defined Networks
NeTS:媒介:软件定义网络从验证到综合
- 批准号:
1513906 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NeTS: Small: Designing Networks for High Throughput
NetS:小型:设计高吞吐量网络
- 批准号:
1423452 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Flexible Networks with Source Control
职业:具有源代码控制的灵活网络
- 批准号:
1149895 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
FIA: Collaborative Research: Architecting for Innovation
FIA:协作研究:创新架构
- 批准号:
1040396 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: Scaling Routing: From Theory to Practice (and Back Again)
NetS:小型:扩展路由:从理论到实践(然后再回来)
- 批准号:
1017069 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EAGER: Adaptive Source Routing on GENI
EAGER:GENI 上的自适应源路由
- 批准号:
1050146 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
New Approaches to Protecting Transportation Infrastructure
保护交通基础设施的新方法
- 批准号:
0900226 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant