A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
基本信息
- 批准号:2009366
- 负责人:
- 金额:$ 29.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research in this project will lead to the development of an efficient computational platform that will provide valuable insight into this physical problem of light scattering. The overarching goal is to provide a toolbox that can be used by several communities to accurately compute the electromagnetic field, complementing experimental measurements. The research will advance knowledge in several fields by filling a gap in the theory and mathematical modeling of electromagnetic fields in exotic structures. The project is designed to include an interdisciplinary (computer science, physics, mathematics), team-based approach with graduate training. The team will focus on creating applied math research results that directly impact current and future experiments. The project includes activities to organize mini-symposia at conferences to foster discussions with other researchers. This research project will be used as a recruiting tool to further promote women and underrepresented minorities in STEM-fields. The goal of this project is to develop a state-of-the-art computational and mathematical platform that accurately and efficiently capture the multiscale behaviors of the electromagnetic field in plasmonic structures. Plasmonic structures are commonly made of metals and dielectrics, and exhibit at optical frequencies surface electromagnetic waves at the metal-dielectric interfaces, called surface plasmons. Over the past decades there has been a great interest to guide and confine surface plasmons in nanophotonic devices, with applications to antennas, cloaking, and others. Surface plasmons are sub-wavelength, hyper-singular near corners, and consequently highly sensitive to the geometry. Commercial software commonly used by scientists and engineers is based on the finite element method, and poorly approximates the electromagnetic near-field in these exotic structures. There is a need for an adapted mathematical framework to capture the multiple scales, and for numerical approaches for computing the electromagnetic field in plasmonic structures to avoid inaccurate predictions. This project will develop a finite element based approach to address this problem that involves specific treatments near the interface the accurately capture the surface plasmons, and a functional framework to extract the highly oscillatory behaviors of the electromagnetic near-field. Specific work includes: (1) solve plasmonic problems for any 2D geometries in a classical framework, (2) solve plasmonic problems for any 2D geometries when hyper-singular behaviors appear, and (3) extend the framework to 3D plasmonic problems and other plasmonic models. Results from this project will lead to insights into the underlying physics, develop accurate methods, and apply them to realistic problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究将导致一个有效的计算平台的发展,这将为光散射的物理问题提供有价值的见解。总体目标是提供一个工具箱,可供多个社区使用,以精确计算电磁场,补充实验测量。该研究将通过填补奇异结构中电磁场理论和数学建模的空白来推进几个领域的知识。该项目旨在包括跨学科(计算机科学,物理,数学),以团队为基础的研究生培训方法。该团队将专注于创造直接影响当前和未来实验的应用数学研究成果。该项目包括在会议上组织小型专题讨论会的活动,以促进与其他研究人员的讨论。该研究项目将被用作招聘工具,以进一步促进stem领域的女性和代表性不足的少数群体。该项目的目标是开发一个最先进的计算和数学平台,以准确有效地捕获等离子体结构中电磁场的多尺度行为。等离子体结构通常由金属和电介质组成,在光学频率下表现为金属-电介质界面上的表面电磁波,称为表面等离子体。在过去的几十年里,人们对引导和限制纳米光子器件中的表面等离子体产生了极大的兴趣,应用于天线、隐形衣和其他领域。表面等离子体是亚波长,超奇异的近角,因此对几何高度敏感。科学家和工程师通常使用的商业软件是基于有限元方法的,很难接近这些奇异结构中的电磁场。需要一个适应的数学框架来捕捉多个尺度,并需要数值方法来计算等离子体结构中的电磁场,以避免不准确的预测。该项目将开发一种基于有限元的方法来解决这一问题,包括在界面附近的特定处理,以准确捕获表面等离子体,以及一个功能框架来提取电磁近场的高振荡行为。具体工作包括:(1)在经典框架下求解任意二维几何的等离子体问题;(2)求解超奇异行为出现时任意二维几何的等离子体问题;(3)将该框架扩展到三维等离子体问题和其他等离子体模型。从这个项目的结果将导致深入了解潜在的物理,开发准确的方法,并将其应用于现实问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Capturing plasmonic behaviors in light scattering by spheres using finite element methods and asymptotic quadrature
使用有限元方法和渐近求积捕获球体光散射中的等离子体行为
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Carvalho, C;Kim A. D.;Latham B.
- 通讯作者:Latham B.
Scattering resonances in unbounded transmission problems with sign-changing coefficient
具有变号系数的无界传输问题中的散射共振
- DOI:10.1093/imamat/hxad005
- 发表时间:2023
- 期刊:
- 影响因子:1.2
- 作者:Carvalho, Camille;Moitier, Zoïs
- 通讯作者:Moitier, Zoïs
Limiting amplitude principle and resonances in plasmonic structures with corners: Numerical investigation
带角的等离子体结构中的极限振幅原理和共振:数值研究
- DOI:10.1016/j.cma.2021.114207
- 发表时间:2022
- 期刊:
- 影响因子:7.2
- 作者:Carvalho, Camille;Ciarlet, Patrick;Scheid, Claire
- 通讯作者:Scheid, Claire
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Camille Carvalho其他文献
Camille Carvalho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Finite Element Assessment of Novel High-Performance Building Panels
新型高性能建筑板材的有限元评估
- 批准号:
567551-2021 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Alliance Grants
A novel hybrid finite-discrete element modeling approach to assess the impact of drilling-induced core damage on laboratory properties of hard brittle rocks
一种新颖的混合有限离散元建模方法,用于评估钻井引起的岩心损伤对硬脆性岩石实验室特性的影响
- 批准号:
580759-2022 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Alliance Grants
Novel imaging metrics and finite element methods for understanding role of bone in osteoarthritis
用于了解骨在骨关节炎中的作用的新颖成像指标和有限元方法
- 批准号:
RGPIN-2015-06420 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Grants Program - Individual
Finite Element Assessment of Novel High-Performance Building Panels
新型高性能建筑板材的有限元评估
- 批准号:
567551-2021 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Alliance Grants
Development of a 3D anatomical database of the human lower limb using novel dissection, digitization, and scanning techniques for the construction of a high fidelity finite element model to simulate n
使用新颖的解剖、数字化和扫描技术开发人体下肢 3D 解剖数据库,以构建高保真度有限元模型来模拟
- 批准号:
565027-2021 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Novel imaging metrics and finite element methods for understanding role of bone in osteoarthritis
用于了解骨在骨关节炎中的作用的新颖成像指标和有限元方法
- 批准号:
RGPIN-2015-06420 - 财政年份:2020
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Grants Program - Individual
The application of high resolution peripheral quantitative computed tomography and finite element modeling as a novel diagnostic tool for osteoporosis and fracture risk
高分辨率外周定量计算机断层扫描和有限元建模的应用作为骨质疏松症和骨折风险的新型诊断工具
- 批准号:
519724-2018 - 财政年份:2020
- 资助金额:
$ 29.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Novel imaging metrics and finite element methods for understanding role of bone in osteoarthritis
用于了解骨在骨关节炎中的作用的新颖成像指标和有限元方法
- 批准号:
RGPIN-2015-06420 - 财政年份:2019
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




