Determining Degrees of Freedom in Nonlinear Complex Systems: Deterministic and Stochastic Applications

确定非线性复杂系统中的自由度:确定性和随机应用

基本信息

  • 批准号:
    2009859
  • 负责人:
  • 金额:
    $ 20.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Almost every aspect of our physical world is described through a nonlinear complex system, from the functioning of our brains to climatic changes. In order to extract concrete information from such systems, suitable mathematical models must be designed so as to capture the most relevant cross-scale interactions and degrees of freedom. In this project the PI will investigate the efficiency of methods for exploring complex system models under two main perspectives. First, through techniques of statistical inference of physical quantities based on observational data. Several applications fit within this scope, for example determining the background fluid velocity field from measurements of the concentration of a diluted passive scalar, such as dye. A second application is the analysis of the long-time behavior of computable regularizations of certain hydrodynamics models. More specifically, geophysical models describing the motion of fluids over a rough surface and used to represent large-scale processes in the atmosphere and ocean. A rigorous analysis of such fundamental questions encompasses a wide range of mathematical tools. As such, the techniques built here may allow for the development of efficient numerical schemes in numerous applications, as well as the advancement of the associated mathematical theory. In addition, this project presents an educational component by including support for the mentoring of one graduate student, as well as undergraduate research co-op support for one undergraduate student.A rigorous and complete description of complex systems requires an analysis at an infinite-dimensional level. In this project the PI will this infinite-dimensional approach to analyze the efficiency of Markov Chain Monte Carlo (MCMC) algorithms, as used in the Bayesian approach to inverse problems. Of particular importance are MCMC algorithms that are well-defined in infinite dimensions, a property that allows corresponding finite-dimensional approximations to beat the curse of dimensionality. This project will tackle several open questions in this field, such as the derivation of mixing rates for some infinite-dimensional MCMC methods and their corresponding finite-dimensional approximations. The techniques to be used here rely crucially on Foias-Prodi type estimates and the existence of a finite number of determining degrees of freedom for certain dissipative evolution equations. Furthermore, this project includes the study of the long-time behavior of certain hydrodynamic models, such as the weakly damped 2D Euler equations subject to a mild regularization. In particular, this will first be addressed through the concept of determining forms, structures encoding the long-time dynamics of the system based on knowledge on the trajectories of only a finite number of degrees of freedom. Later, the system will be analyzed under the action of a stochastic forcing term. Here, an interesting question consists in establishing the convergence of invariant measures as the regularization parameter vanishes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们物理世界的几乎每一个方面都是通过一个非线性复杂系统来描述的,从我们大脑的功能到气候变化。为了从这些系统中提取具体的信息,必须设计适当的数学模型,以捕捉最相关的跨尺度相互作用和自由度。在这个项目中,PI将从两个主要角度研究探索复杂系统模型的方法的效率。首先,通过基于观测数据的物理量统计推断技术。几个应用程序适合在这个范围内,例如确定背景流体速度场的浓度的测量稀释的被动标量,如染料。第二个应用是分析某些流体力学模型的可计算正则化的长期行为。更具体地说,地球物理模型描述流体在粗糙表面上的运动,并用于表示大气和海洋中的大规模过程。对这些基本问题的严格分析包含了广泛的数学工具。因此,这里建立的技术可以允许在许多应用中开发有效的数值方案,以及相关数学理论的进步。此外,该项目还提供了一个教育部分,包括支持一名研究生的指导,以及支持一名本科生的本科生研究合作。复杂系统的严格和完整的描述需要在无限维水平上进行分析。在本项目中,PI将使用这种无限维方法来分析马尔可夫链蒙特卡罗(MCMC)算法的效率,正如逆问题的贝叶斯方法中所使用的那样。特别重要的是MCMC算法,在无限维中定义良好,允许相应的有限维近似击败维数灾难的属性。这个项目将解决这个领域的几个开放性问题,例如一些无限维MCMC方法的混合率的推导及其相应的有限维近似。这里使用的技术依赖于Foias-Prodi型估计和存在有限数量的确定自由度的某些耗散演化方程。此外,该项目还包括对某些流体动力学模型的长期行为的研究,例如弱阻尼二维欧拉方程的轻度正则化。特别是,这将首先通过确定形式的概念来解决,结构编码的长期动态系统的基础上的知识的轨迹只有有限数量的自由度。随后,系统将在随机强迫项的作用下进行分析。在这里,一个有趣的问题在于建立收敛不变的措施,作为正则化参数vanishes.This奖项反映了NSF的法定使命,并已被认为是值得支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mixing rates for Hamiltonian Monte Carlo algorithms in finite and infinite dimensions
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cecilia Mondaini其他文献

Cecilia Mondaini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cecilia Mondaini', 18)}}的其他基金

CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Acoustic Vortex Robots for Contactless 6-Degrees-of-Freedom Object Manipulation
职业:用于非接触式 6 自由度物体操纵的声学涡旋机器人
  • 批准号:
    2340016
  • 财政年份:
    2024
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Standard Grant
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
  • 批准号:
    23K13096
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
  • 批准号:
    2328993
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Continuing Grant
Study of photo-induced phase transitions in strongly correlated systems by extraction of important degrees of freedom using randomized singular value decomposition
通过使用随机奇异值分解提取重要自由度来研究强相关系统中的光致相变
  • 批准号:
    23K03281
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study of novel superconducting phenomena in strongly correlated systems with multiple degrees of freedom
多自由度强相关系统中新型超导现象的理论研究
  • 批准号:
    23K13056
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Harnessing unconventional structural degrees of freedom to design new hybrid layered perovskites
利用非常规结构自由度设计新型混合层状钙钛矿
  • 批准号:
    2312751
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Continuing Grant
Elucidation of odd-parity superconducting states arising from sublattice degrees of freedom
阐明由亚晶格自由度产生的奇宇称超导态
  • 批准号:
    23H01124
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Search for novel topological quantum phases and elucidation of their electronic structures using multiple degrees of freedom in heavy electron systems
在重电子系统中使用多自由度寻找新颖的拓扑量子相并阐明其电子结构
  • 批准号:
    23H01132
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A New Intraoral Six-Degrees of Freedom Jaw Movement Tracking Method Using Magnetic Fingerprints
一种新的基于磁指纹的口内六自由度下颌运动跟踪方法
  • 批准号:
    23K19703
  • 财政年份:
    2023
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Myoelectric upper limb prosthesis with multiple degrees of freedom using targeted muscle reinnervation surgery for traumatic amputation
多自由度肌电上肢假肢,采用靶向肌肉神经支配手术治疗创伤性截肢
  • 批准号:
    22K16723
  • 财政年份:
    2022
  • 资助金额:
    $ 20.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了