ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips

ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度

基本信息

  • 批准号:
    2328993
  • 负责人:
  • 金额:
    $ 487.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2028-09-30
  • 项目状态:
    未结题

项目摘要

Nontechnical Abstract: This ExpandQISE program at The City College of New York seeks to advance the fundamental understanding of quantum phenomena in engineered optical structures endowed with additional degrees of freedom by manipulating the fundamental properties of light and its interaction with nanomaterials. This initiative aims at the development of nascent quantum materials with novel properties that can be attained by combining topological photonic properties and quantum properties of light and matter. This project advances the fields of integrated quantum photonics through the systematic discovery of new materials that possess the necessary functionalities to enable development of novel quantum devices. To maximize the effectiveness of the discovery process, this project combines theoretical and experimental efforts from interdisciplinary teams, including academia (City College and University of Central Florida) and industry. In addition to its direct scientific impact, the project will have a broad societal impact through the development of emerging technologies for quantum information processing and advances ongoing workforce development efforts thanks to the strong involvement of undergraduate students in all aspects of research. Outreach programs with active participation of high school and undergraduate students, with focus on underrepresented groups, will further broaden the project impact. Technical Abstract: This ExpandQISE program at The City College of New York seeks to address fundamental questions of materials science and light-matter interactions in artificial quantum optical materials endowed with additional synthetic degrees of freedom – pseudo-spins – and characterized by nontrivial topological properties. Our research team builds on our existing expertise in theoretical nano-photonics as well as advanced fabrication and experimental techniques to attain novel materials characteristics and functionalities emerging in quantum regimes. Specifically, this activity focuses on development of the concept of active quantum topological materials that will enable control over quantum excitations of both light and matter on a photonic chip. This effort enables generation and manipulation of quantum states of structured optical modes and topological boundary states endowed with synthetic degrees of freedom on a chip. Additionally, by harnessing the fundamental properties of such quantum photonic states this project enables novel polaritonic states with tailored properties that can be used for quantum technologies, such as control of pseudo-spins with synthetic gauge fields engineered at nanoscale, including actively via light-matter interactions. The possibility to imprint the state of a pseudo-spin onto quantum states of light emitted by integrated quantum emitters enables novel opportunities for integrated quantum photonics, where quantum information is encoded in the modal structure of optical states. Our approach to quantum materials design leverages a variety of quantum excitations in materials integrated into topological photonic structures, such as van der Waals materials, organic excitonic materials, and wide bandgap semiconductors. The coupling of structured light with quantum emitters is attained through their precise integration. At the same time, strong and highly tailorable light-matter interactions engineered in our platform enable extreme nonlinearities, including nonlinear effects with selection rules dictated by symmetry-engineered pseudo-spins, photon blockade and synthetic gauge fields. Tunable synthetic gauge fields emerging from such tailored light-matter interactions open a pathway to realize unitary operations – reprogrammable quantum gates – in the photonic pseudo-spin subspace.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), the Directorate of Engineering (ENG), and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:纽约城市学院的这个扩展qise项目旨在通过操纵光的基本特性及其与纳米材料的相互作用,推进对工程光学结构中量子现象的基本理解,这些结构被赋予了额外的自由度。该计划旨在通过结合光和物质的拓扑光子特性和光的量子特性来开发具有新特性的新生量子材料。该项目通过系统地发现具有必要功能的新材料来开发新型量子器件,从而推进集成量子光子学领域的发展。为了最大限度地提高发现过程的有效性,该项目结合了跨学科团队的理论和实验努力,包括学术界(城市学院和中佛罗里达大学)和工业界。除了其直接的科学影响外,该项目还将通过开发量子信息处理的新兴技术产生广泛的社会影响,并由于本科生在研究的各个方面的积极参与,推动正在进行的劳动力发展工作。高中生和大学生积极参与的外展项目,重点关注代表性不足的群体,将进一步扩大项目的影响。技术摘要:纽约城市学院的这个扩展qise项目旨在解决材料科学和光物质相互作用的基本问题,这些问题在人工量子光学材料中被赋予了额外的合成自由度-伪自旋-并以非琐碎的拓扑特性为特征。我们的研究团队建立在我们现有的理论纳米光子学专业知识以及先进的制造和实验技术的基础上,以获得量子体制中出现的新材料特性和功能。具体来说,这项活动的重点是发展活性量子拓扑材料的概念,这将使控制光子芯片上光和物质的量子激发成为可能。这项工作使得在芯片上生成和操纵结构光学模式的量子态和具有合成自由度的拓扑边界态成为可能。此外,通过利用这种量子光子态的基本特性,该项目使具有可用于量子技术的定制特性的新型极化态成为可能,例如在纳米尺度上设计的合成规范场控制伪自旋,包括积极地通过光-物质相互作用。在集成量子发射器发射的光的量子态上刻印伪自旋状态的可能性为集成量子光子学提供了新的机会,在集成量子光子学中,量子信息被编码在光学态的模态结构中。我们的量子材料设计方法利用了集成到拓扑光子结构中的材料中的各种量子激发,例如范德华材料、有机激子材料和宽带隙半导体。通过对结构光和量子发射体的精确集成,实现了结构光与量子发射体的耦合。同时,在我们的平台上设计的强且高度可定制的光-物质相互作用实现了极端非线性,包括由对称设计的伪自旋、光子封锁和合成规范场决定的选择规则的非线性效应。从这种定制的光-物质相互作用中产生的可调谐合成规范场为在光子伪自旋子空间中实现统一操作(可重新编程的量子门)开辟了一条途径。该项目由多学科活动办公室(MPS/OMA)、工程局(ENG)和技术前沿计划(TIP/TF)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Khanikaev其他文献

Roadmap on topological photonics
  • DOI:
    10.1088/2515-7647/ac4ee4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Hannah Price;Yidong Chong;Alexander Khanikaev;Henning Schomerus;Lukas J. Maczewsky;Mark Kremer;Matthias Heinrich;Alexander Szameit;Oded Zilberberg;Yihao Yang;Baile Zhang;Andrea Alù;Ronny Thomale;Iacopo Carusotto;Philippe St-Jean;Alberto Amo;Avik Dutt;Luqi
  • 通讯作者:
    Luqi

Alexander Khanikaev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Khanikaev', 18)}}的其他基金

Novel Aspects of Topological Photonics in Open Optical Systems: Non-Hermiticity and Fano-Resonances
开放光学系统中拓扑光子学的新颖之处:非厄米性和法诺共振
  • 批准号:
    1809915
  • 财政年份:
    2018
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Science and Engineering of Topological Acoustics and Mechanics
合作研究:拓扑声学与力学科学与工程
  • 批准号:
    1660491
  • 财政年份:
    2016
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Science and Engineering of Topological Acoustics and Mechanics
合作研究:拓扑声学与力学科学与工程
  • 批准号:
    1537294
  • 财政年份:
    2015
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant

相似海外基金

IRES Track I: Island Invasion Biology - Leveraging the Galapagos and Hawaiian Islands to provide immersive undergraduate research experiences.
IRES 轨道 I:岛屿入侵生物学 - 利用加拉帕戈斯群岛和夏威夷群岛提供沉浸式本科生研究体验。
  • 批准号:
    2245931
  • 财政年份:
    2024
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track II: Short Courses on Manufacturing Frontiers Leveraging Unique Facilities in Italy
合作研究:IRES Track II:利用意大利独特设施的制造前沿短期课程
  • 批准号:
    2246809
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track II: Short Courses on Manufacturing Frontiers Leveraging Unique Facilities in Italy
合作研究:IRES Track II:利用意大利独特设施的制造前沿短期课程
  • 批准号:
    2246808
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
CIVIC-FA Track A: Leveraging existing fiber-optic cables to identify and manage urban environmental hazards
CIVIC-FA 轨道 A:利用现有光纤电缆识别和管理城市环境危害
  • 批准号:
    2322198
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
RII Track-4: Leveraging fermented foods to understand microbial interactions under changing environments and broaden scientific training opportunities
RII Track-4:利用发酵食品了解不断变化的环境下微生物的相互作用并扩大科学培训机会
  • 批准号:
    2132238
  • 财政年份:
    2022
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track H: Leveraging Human-Centered AI Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment for Persons with Disabilities
NSF 融合加速器轨道 H:利用以人为本的人工智能微交通改善残疾人住房和就业之间的时空不匹配
  • 批准号:
    2235225
  • 财政年份:
    2022
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
CIVIC-PG Track A: Leveraging Existing Fiber-Optic Cables to Identify and Manage Urban Environmental Hazards
CIVIC-PG 轨道 A:利用现有光纤电缆识别和管理城市环境危害
  • 批准号:
    2228314
  • 财政年份:
    2022
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Leveraging AI-assist Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment
SCC-CIVIC-PG Track A:利用人工智能辅助微交通改善住房和就业之间的时空错配
  • 批准号:
    2043611
  • 财政年份:
    2021
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
IRES Track II: Leveraging Dutch Expertise in Advanced Techniques for Water Management
IRES Track II:利用荷兰先进水管理技术的专业知识
  • 批准号:
    2107669
  • 财政年份:
    2021
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
SCC-IRG Track 2: Leveraging Smart Technologies and Managing Community Resilience through Networked Communities and Cross-Sector Partnerships
SCC-IRG 第 2 轨道:利用智能技术并通过网络社区和跨部门合作伙伴关系管理社区复原力
  • 批准号:
    1952792
  • 财政年份:
    2020
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了