NSF-BSF: Collaborative Research: Rankine-Hugoniot Conditions Relating the Gyrotropic Regions of Collisionless Shocks in Non-Thermal Plasma

NSF-BSF:合作研究:与非热等离子体中无碰撞激波的回旋区域相关的兰金-于戈尼奥条件

基本信息

  • 批准号:
    2010144
  • 负责人:
  • 金额:
    $ 24.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project will develop a new and more accurate model of shock waves in rarefied plasmas in space and laboratory environments. So-called collisionless shock waves belong to the most fundamental phenomena occurring in hot and rarified plasmas. Astrophysical waves accelerate particles, dissipate energy, and strongly perturb the environment they propagate through by converting dynamic pressure of a plasma flow into thermal energy. One of the central theoretical issues in modern plasma physics is a quantitative prediction of the plasma state behind a shock wave (downstream) for given parameters in front of it (upstream). The majority of directly observed collisionless shocks are in the heliosphere; however, they can also be created in a laboratory. The grand challenge of this project is to develop a new theoretical approach that would, on the one hand, account for the details of how individual particles interact with shock waves in collisionless plasma, but on the other hand, identify easy-to-use relationships between upstream and downstream conditions, similar to those widely used for shock waves in aerodynamics. The project will train students and postdocs in computational science and plasma physics, as well as expose them to international science cooperation via collaboration with Ben Gurion University supported by the U.S. - Israel Binational Science Foundation.Collisionless shocks (CSs) are ubiquitous in many space physics, astrophysics, and laboratory settings. Despite more than six decades of CS research, the present status of the problem remains essentially unchanged in comparison to the early advances. Application of standard Rankine–Hugoniot conditions to CSs is either invalid or highly inaccurate. The objective of this research is to incorporate the essential ion dynamics at shock fronts into a statistical description which would make it possible, on the one hand, to avoid going into details of ion motion and, on the other hand, abandon ad hoc assumptions related to the equations of state. Local hybrid and fully-kinetic PIC simulations will be used to validate and improve on the probabilistic, test-particle approach. This research will ensure a substantial step forward in the CS physics by providing a theory which can be compared quantitatively with real observations. The probabilistic approach is expected to be efficient for other problems of plasma physics, where the full kinetic approach is currently impossible, while the assumptions based on the fluid approximation are not valid. Its relative simplicity and ability to cover a wide range of shock parameters makes it possible to create convenient analytic formulae and/or lookup tables to be used by a wide range of plasma physicists. These will also be useful for the development of global magnetohydrodynamic models involving collisionless shocks enabling, in particular, more accurate forecasting of space weather.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发一种新的、更准确的太空和实验室环境中稀薄等离子体冲击波模型。 所谓的无碰撞冲击波属于高温稀薄等离子体中发生的最基本现象。天体物理波通过将等离子体流的动态压力转化为热能来加速粒子、耗散能量并强烈扰乱它们传播的环境。 现代等离子体物理学的核心理论问题之一是对冲击波(下游)前面(上游)给定参数的等离子体状态进行定量预测。大多数直接观测到的无碰撞激波都发生在日光层;然而,它们也可以在实验室中创建。 该项目的巨大挑战是开发一种新的理论方法,一方面,解释单个粒子如何与无碰撞等离子体中的冲击波相互作用的细节,另一方面,确定上游和下游条件之间易于使用的关系,类似于空气动力学中广泛用于冲击波的关系。 该项目将培训计算科学和等离子体物理学方面的学生和博士后,并通过与美国-以色列两国科学基金会支持的本古里安大学合作,让他们接触国际科学合作。无碰撞激波(CS)在许多空间物理学、天体物理学和实验室环境中普遍存在。 尽管计算机科学研究已经进行了六十多年,但与早期进展相比,该问题的现状基本上没有改变。 将标准 Rankine-Hugoniot 条件应用于 CS 要么无效,要么非常不准确。 这项研究的目的是将激波前沿的基本离子动力学纳入统计描述中,一方面可以避免深入研究离子运动的细节,另一方面可以放弃与状态方程相关的临时假设。 局部混合和全动态 PIC 模拟将用于验证和改进概率测试粒子方法。这项研究将通过提供一种可以与实际观测进行定量比较的理论,确保计算机科学物理学向前迈出实质性的一步。概率方法预计对于等离子体物理的其他问题是有效的,其中全动力学方法目前是不可能的,而基于流体近似的假设是无效的。它的相对简单性和覆盖广泛冲击参数的能力使得创建方便的分析公式和/或查找表以供广泛的等离子体物理学家使用成为可能。这些也将有助于开发涉及无碰撞冲击的全球磁流体动力学模型,特别是能够更准确地预测空间天气。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Change of Rankine–Hugoniot Relations during Postshock Relaxation of Anisotropic Distributions
各向异性分布震后弛豫过程中Rankine-Hugoniot关系的变化
  • DOI:
    10.3847/1538-4357/ac958d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gedalin, Michael;Golan, Michal;Pogorelov, Nikolai V.;Roytershteyn, Vadim
  • 通讯作者:
    Roytershteyn, Vadim
Probabilities of ion scattering at the shock front
激波前沿离子散射的概率
  • DOI:
    10.1017/s0022377822000034
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gedalin, Michael;Pogorelov, Nikolai V.;Roytershteyn, Vadim
  • 通讯作者:
    Roytershteyn, Vadim
Boundary Conditions at the Heliospheric Termination Shock with Pickup Ions
拾取离子日光层终止激波的边界条件
  • DOI:
    10.3847/1538-4357/ac05b7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gedalin, Michael;Pogorelov, Nikolai V.;Roytershteyn, Vadim
  • 通讯作者:
    Roytershteyn, Vadim
Role of the overshoot in the shock self-organization
超调在激波自组织中的作用
  • DOI:
    10.1017/s0022377823000090
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gedalin, Michael;Dimmock, Andrew P.;Russell, Christopher T.;Pogorelov, Nikolai V.;Roytershteyn, Vadim
  • 通讯作者:
    Roytershteyn, Vadim
Scattering of Ions at a Rippled Shock
波纹冲击下离子的散射
  • DOI:
    10.3847/1538-4357/acd63c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gedalin, Michael;Pogorelov, Nikolai V.;Roytershteyn, Vadim
  • 通讯作者:
    Roytershteyn, Vadim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Roytershteyn其他文献

Jets Downstream of Collisionless Shocks
  • DOI:
    10.1007/s11214-018-0516-3
  • 发表时间:
    2018-06-21
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Ferdinand Plaschke;Heli Hietala;Martin Archer;Xóchitl Blanco-Cano;Primož Kajdič;Tomas Karlsson;Sun Hee Lee;Nojan Omidi;Minna Palmroth;Vadim Roytershteyn;Daniel Schmid;Victor Sergeev;David Sibeck
  • 通讯作者:
    David Sibeck
Recent Evolution in the Theory of Magnetic Reconnection and Its Connection with Turbulence
  • DOI:
    10.1007/s11214-013-0021-7
  • 发表时间:
    2013-09-28
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Homa Karimabadi;Vadim Roytershteyn;William Daughton;Yi-Hsin Liu
  • 通讯作者:
    Yi-Hsin Liu

Vadim Roytershteyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Roytershteyn', 18)}}的其他基金

Collaborative Research: Travel Supplement for Frontera's "Multi-scale, MHD-Kinetic Modeling of the Solar Wind and its Interaction with the Local Interstellar Medium"
合作研究:Frontera 的“太阳风的多尺度、MHD 动力学模型及其与当地星际介质的相互作用”的旅行补充材料
  • 批准号:
    2031661
  • 财政年份:
    2020
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM: The Excitation and Propagation of Fast Magnetosonic Waves and Their Effect on Radiation Belt Electrons
合作研究:GEM:快磁声波的激发和传播及其对辐射带电子的影响
  • 批准号:
    2031024
  • 财政年份:
    2018
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Linear Physics of the Interaction Between a Relativistic Electron Beam and Magnetized Plasma: an Integrated Experimental and Modeling Approach
合作研究:相对论电子束与磁化等离子体之间相互作用的非线性物理:一种综合实验和建模方法
  • 批准号:
    1707275
  • 财政年份:
    2017
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Dissipation and Kinetic Physics of Astrophysical Turbulence
天体物理湍流的耗散和运动物理学
  • 批准号:
    1614664
  • 财政年份:
    2016
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Integrated Approach to Reconnection: State-of-the-Art Kinetic Simulations of MRX Experiments
重新连接的综合方法:MRX 实验的最先进的动力学模拟
  • 批准号:
    1202018
  • 财政年份:
    2012
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Magnetic Reconnection near the Dreicer Limit
德雷瑟极限附近的磁重联
  • 批准号:
    1202152
  • 财政年份:
    2012
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333890
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了