GOALI/Collaborative Research: Understanding Interfacial Mechanisms to Design and Manufacture High-Performance Biodegradable Ionic Liquid Lubricants
GOALI/合作研究:了解界面机制以设计和制造高性能可生物降解离子液体润滑剂
基本信息
- 批准号:2010205
- 负责人:
- 金额:$ 36.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Room-temperature ionic liquid (RTIL) lubricants derived from bio-based feedstock are environmentally benign and can offer lubrication performance superior to that of petroleum-based lubricants. However, the broad application of RTILs has been limited by the lack of a fundamental understanding of their lubrication mechanisms. Importantly, the ability of RTILs to provide adequate lubrication is determined by the preferential adsorption of RTILs on the surfaces of machine components, which in turn is affected by the interplay between surface roughness and RTIL size and structure. It is expected that, by changing the molecular structure of RTILs, the desired adsorption layer can be engineered on a given surface. This Grant Opportunities for Academic Liaison with Industry (GOALI) award will support the modeling and experimental research needed to achieve this goal. The project brings together PIs from academia with experience in tribology and tribocorrosion, biofuel and biochemical synthesis, molecular-scale simulation, and materials characterization with an industrial partner who will evaluate the RTILs in machine components and develop commercialization plans. Together, the team will achieve a new understanding of the lubrication mechanisms of RTILs that will enable design and manufacturing of bio-based lubricants with superior performance that are viable alternatives to petroleum-based products. The new RTILs will benefit industry, increasing national competitiveness, as well as society by enabling a cleaner, healthier environment. In parallel, this project will provide interdisciplinary education, research, and training opportunities for the next generation of engineers and scientists in both academic and industrial settings. The goal of this integrated experimental and computational project is to understand the mechanisms of RTIL lubrication for sliding surfaces with variable roughness and topography to enable design of sustainable lubricants from bio-based feedstock. The RTILs will be evaluated in terms of both their performance as lubricants and their biodegradability. Through this fundamental study, the following key scientific questions will be answered: (1) How do RTILs adsorb (form lubricating layers) on surfaces of varying roughness? (2) What tribological (friction and wear) and tribocorrosive (synergistic wear-corrosion) mechanisms are exhibited by RTIL-lubricated surfaces of varying roughness? (3) How do changes in surface topography influence RTIL lubrication mechanisms? (4) What is the role of molecular structure in the biodegradability of RTILs? Answering these questions will provide the foundational knowledge needed to overcome the current barriers to adopting RTILs as lubricants in industrial settings. This research will contribute to: (a) an in-depth understanding of the interplay between electrochemical and mechanical processes that affect material and lubricant degradation; (b) design criteria for RTIL-lubricated systems with improved tribocorrosion resistance; and (c) environmentally benign RTILs that can ultimately replace existing petroleum-based lubricants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由生物基原料制备的室温离子液体(RTIL)润滑剂对环境友好,润滑性能上级于石油基润滑剂。然而,RTIL的广泛应用受到了限制,缺乏对其润滑机制的基本了解。重要的是,RTIL提供足够润滑的能力是由RTIL在机器部件表面上的优先吸附决定的,而这又受到表面粗糙度与RTIL尺寸和结构之间的相互作用的影响。预期通过改变RTIL的分子结构,可以在给定表面上设计所需的吸附层。该奖项将支持实现这一目标所需的建模和实验研究。该项目汇集了来自学术界的PI,他们在摩擦学和摩擦腐蚀,生物燃料和生化合成,分子尺度模拟和材料表征方面具有丰富的经验,并与工业合作伙伴一起评估机器组件中的RTIL并制定商业化计划。该团队将共同实现对RTIL润滑机制的新理解,从而能够设计和制造具有上级性能的生物基润滑剂,这些润滑剂是石油基产品的可行替代品。新的RTIL将有利于工业,提高国家竞争力,并通过创造更清洁,更健康的环境来造福社会。同时,该项目将为学术和工业环境中的下一代工程师和科学家提供跨学科教育,研究和培训机会。这个综合实验和计算项目的目标是了解RTIL润滑具有可变粗糙度和地形的滑动表面的机制,以使生物基原料的可持续润滑剂的设计成为可能。RTIL将在其作为润滑剂的性能和其生物降解性方面进行评估。通过这项基础研究,将回答以下关键科学问题:(1)RTIL如何在不同粗糙度的表面上吸附(形成润滑层)?(2)不同粗糙度的RTIL润滑表面表现出什么样的摩擦学(摩擦和磨损)和摩擦腐蚀(协同磨损-腐蚀)机制?(3)表面形貌的变化如何影响RTIL润滑机制?(4)分子结构在RTIL的生物降解性中起什么作用?解决这些问题将提供克服目前在工业环境中采用RTIL作为润滑剂的障碍所需的基础知识。这项研究将有助于:(a)深入了解影响材料和润滑剂降解的电化学和机械过程之间的相互作用;(B)具有改进的耐摩擦腐蚀性的RTIL润滑系统的设计标准;及(c)最终可取代现有石油的环保型RTIL-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physicochemical and tribological comparison of bio- and halogen-based ionic liquid lubricants
- DOI:10.1016/j.molliq.2022.120918
- 发表时间:2022-11
- 期刊:
- 影响因子:6
- 作者:M. Hafizur Rahman;Ting Liu;Tatianna Macias;M. Misra;Manish Patel;A. Martini;P. Menezes
- 通讯作者:M. Hafizur Rahman;Ting Liu;Tatianna Macias;M. Misra;Manish Patel;A. Martini;P. Menezes
Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids
- DOI:10.1016/j.molliq.2022.118700
- 发表时间:2022-02
- 期刊:
- 影响因子:6
- 作者:A. Khajeh;M. Rahman;T. Liu;Pawan Panwar;P. Menezes;A. Martini
- 通讯作者:A. Khajeh;M. Rahman;T. Liu;Pawan Panwar;P. Menezes;A. Martini
Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants
- DOI:10.1007/s11249-022-01583-6
- 发表时间:2022-03
- 期刊:
- 影响因子:3.2
- 作者:Ting Liu;Pawan Panwar;A. Khajeh;M. Rahman;P. Menezes;A. Martini
- 通讯作者:Ting Liu;Pawan Panwar;A. Khajeh;M. Rahman;P. Menezes;A. Martini
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pradeep Menezes其他文献
Pradeep Menezes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147126 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
- 批准号:
2126461 - 财政年份:2021
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
- 批准号:
2032261 - 财政年份:2021
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
- 批准号:
2050691 - 财政年份:2021
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant














{{item.name}}会员




