Collaborative Research: GOALI: Nonlinear Coupling in Pulsed Electronegative Plasmas: Multiple-sources, Multiple-frequencies, Multiple-time scales
合作研究:GOALI:脉冲电负性等离子体中的非线性耦合:多源、多频率、多时间尺度
基本信息
- 批准号:2010558
- 负责人:
- 金额:$ 49.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Society critically depends on computers, cell phones and a myriad of specialized electrical circuits in nearly every technological product we use, from cars to door openers. What is not widely known is that these electrical circuits are largely contained in small semiconductor chips, that the dimensions of components of those circuits are approaching the size of atoms, and that the circuits are produced in machines containing the fourth state of matter – plasma. Plasmas are ionized gases that can produce chemically reactive environments, and are composed of a mix of positive ions, negative ions, electrons and neutral atoms and molecules. Low pressure plasmas are essential to the fabrication of microelectronics devices by delivering fluxes of radicals and ions to a semiconductor wafer. These radicals and ions then etch (remove material), deposit (add material) and passivate (change surface composition) the wafer surface through many fabrication steps to create the devices. A voltage is also applied to the substrate holding the wafer to accelerate ions to high energies in order to activate these on-wafer processes. An important type of plasma used in microelectronics fabrication is an electronegative plasma in which the density of negative ions is much larger than electrons. These plasmas are very sensitive to operating conditions (such as power, pressure and gas mixture), with instabilities often. The quality of the devices being fabricated are sensitive to these instabilities and so tighter control of the plasma process is becoming more important. Pulsing the plasma (turning the power on-and-off) and pulsing the acceleration voltage results in higher precision components with smaller dimensions, whiich translates into more powerful electronics devices. Although pulsing provides many advantages, pulsing also produces instabilities. In order to optimize the plasma processes that are used to manufacture microelectronics devices, these instabilities in electronegative plasmas must be understood, controlled and, if possible, prevented.In this project, experimental and computational investigations of pulsed electronegative plasmas are being conducted for the type of inductively coupled plasmas (ICPs) that are used for microelectronics fabrication. The goal is to quantify the interactions between the pulsed sources that produce the plasma and the pulsed biases that accelerate ions into the wafer, the onset of instabilities, and methods to control those instabilities. This investigation is being conducted in collaboration with our GOALI partner Lam Research Corp. We are making 3-dimensional, time dependent measurements of electron density, temperature, plasma potential, current density, magnetic fields and ion energy distributions using laser and electrical probe diagnostics. First principles modeling is being used to investigate fundamental plasma transport during pulsed transients, electrostatic-to-electromagnetic (E-H) transitions and interactions of pulsed sources and biases. The end result will be a greatly improved understanding of pulsed electronegative plasmas of the type used for materials processing, with this understanding being rapidly translated to practice by our GOALI partner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从汽车到开门器,我们使用的几乎所有科技产品都离不开电脑、手机和无数专门的电路。不为人所知的是,这些电路大部分是装在小型半导体芯片里的,这些电路元件的尺寸接近原子的大小,而且这些电路是在含有第四种物质状态——等离子体的机器里生产的。等离子体是可以产生化学反应环境的电离气体,由正离子、负离子、电子和中性原子和分子的混合物组成。低压等离子体是制造微电子器件必不可少的,通过向半导体晶圆提供自由基和离子的通量。然后这些自由基和离子通过许多制造步骤蚀刻(去除材料)、沉积(添加材料)和钝化(改变表面成分)晶圆表面来制造器件。在保持晶圆的衬底上施加电压,将离子加速到高能量,以激活这些晶圆上的过程。用于微电子制造的一种重要等离子体是电负性等离子体,其中负离子的密度远远大于电子。这些等离子体对操作条件(如功率、压力和气体混合物)非常敏感,经常不稳定。正在制造的器件的质量对这些不稳定性很敏感,因此对等离子体过程的严格控制变得更加重要。脉冲等离子体(打开和关闭电源)和脉冲加速电压产生精度更高、尺寸更小的组件,从而转化为更强大的电子设备。虽然脉冲提供了许多优点,但脉冲也产生了不稳定性。为了优化用于制造微电子器件的等离子体过程,必须了解、控制并在可能的情况下预防电负性等离子体中的这些不稳定性。在这个项目中,脉冲电负性等离子体的实验和计算研究正在为用于微电子制造的电感耦合等离子体(icp)类型进行。目标是量化产生等离子体的脉冲源和加速离子进入晶圆的脉冲偏差之间的相互作用,不稳定性的开始,以及控制这些不稳定性的方法。这项研究是与我们的GOALI合作伙伴Lam Research Corp.合作进行的。我们正在使用激光和电探针诊断技术对电子密度、温度、等离子体势、电流密度、磁场和离子能量分布进行三维、时间相关的测量。第一性原理建模被用于研究脉冲瞬变过程中的基本等离子体输运、静电到电磁(E-H)跃迁以及脉冲源和偏置的相互作用。最终结果将大大提高对用于材料加工的脉冲电负性等离子体的理解,这种理解将迅速转化为我们的GOALI合作伙伴的实践。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walter Gekelman其他文献
Active and laboratory experiments in space plasma physics
- DOI:
10.1007/bf01044576 - 发表时间:
1995-05-01 - 期刊:
- 影响因子:7.100
- 作者:
Walter Gekelman - 通讯作者:
Walter Gekelman
Walter Gekelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walter Gekelman', 18)}}的其他基金
Collaborative Research: GOALI - Non-Equilibrium Processes, Stability, Design and Control of Pulsed Plasmas for Materials Processing
合作研究:GOALI - 用于材料加工的脉冲等离子体的非平衡过程、稳定性、设计和控制
- 批准号:
1500099 - 财政年份:2015
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Renewal of The Basic Plasma Science Facility
更新基本等离子体科学设施
- 批准号:
1036140 - 财政年份:2011
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Measurement, Analysis and Control of Waves and Ion Distribution Functions in a Industrial Plasma Processing Tool
工业等离子体处理工具中波和离子分布函数的测量、分析和控制
- 批准号:
1004203 - 财政年份:2010
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Renewal of the Basic Plasma Science Facility
更新基本等离子体科学设施
- 批准号:
0531621 - 财政年份:2006
- 资助金额:
$ 49.73万 - 项目类别:
Cooperative Agreement
Creating, Controlling and Understanding Structure in Plasmas
创建、控制和理解等离子体结构
- 批准号:
0408226 - 财政年份:2004
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Frontier Physics and Astronomy Research with Technical Presentations
前沿物理和天文学研究及技术演示
- 批准号:
0243625 - 财政年份:2003
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Basic Plasma Science Facility
基础等离子体科学设施
- 批准号:
0075916 - 财政年份:2001
- 资助金额:
$ 49.73万 - 项目类别:
Cooperative Agreement
Laboratory Experiments on Shear Alfven Waves and Shocks
剪切阿尔文波和冲击的实验室实验
- 批准号:
9703831 - 财政年份:1997
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
High Resolution Laser Diagnostics of Alfven Wave Particle Interaction
阿尔文波粒子相互作用的高分辨率激光诊断
- 批准号:
9309075 - 财政年份:1994
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147126 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
- 批准号:
2126461 - 财政年份:2021
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
- 批准号:
2032261 - 财政年份:2021
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
- 批准号:
2050691 - 财政年份:2021
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant