In-Situ Formation of Ternary Sulfide-rich Interphases for Stabilizing Lithium Deposition in Lithium-sulfur Batteries
原位形成富含三元硫化物的界面相以稳定锂硫电池中的锂沉积
基本信息
- 批准号:2011415
- 负责人:
- 金额:$ 44.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy storage at an affordable cost has emerged as one of the challenging issues for the energy sector, being critical for a wide range of applications ranging from electric vehicles to grid storage of renewable energies. Lithium-sulfur batteries are one the most promising next-generation battery technologies, as lithium and sulfur exhibit charge-storage capacity ten times higher than that of the electrode materials used in current lithium-ion batteries. Also, sulfur is environmentally benign, inexpensive, and widely available with secure domestic supply chains. Despite these advantages, the commercial adoption of lithium-sulfur batteries is hobbled by their poor cycle life. This project focuses on developing an effective strategy for improving the cycle life of lithium-sulfur batteries by systematically tuning the surface composition and properties of the anode. The effect of the modified interface material anode layer on the cycle life will be investigated with various computational, electrochemical, and materials characterization techniques. This will be a crucial step towards realizing practically relevant lithium-sulfur batteries with high energy density and extended cycle life. This work is also expected to yield new insights into the unique chemistry of sulfur compounds, which find applications in diverse areas, including photovoltaics, catalysis, and organic semiconductors. The project will also provide a broad interdisciplinary training to graduate and undergraduate students as well as historically underrepresented community college students and teachers in the globally important area of clean energy, encompassing inorganic chemistry, solid-state physics, electrochemical systems, and materials science and engineering.The unique chemistry of sulfur and its tendency to form polysulfide intermediates that are soluble in the liquid electrolyte profoundly impact the solid-electrolyte interphase (SEI) layer formed on lithium-metal surface in Li-S batteries. This project focuses on developing a systematic and effective strategy for tailoring the composition of the SEI layer to improve the reversibility of lithium plating and stripping in Li-S batteries. Electrolyte and cathode additives will be identified that work in tandem with the generated polysulfide intermediates to form a stabilizing SEI layer on lithium-metal surface. Specifically, high Li-ion conductivity LiXS ternary sulfides will be investigated as in-situ engineered SEI components, where X is a high-oxidation state cation of an element less electronegative than sulfur. It is hypothesized that the nature of X-S bond would play a critical role in determining the properties of the modified SEI layer, and consequently, the measured lithium cycling efficiency. The impact of the in-situ modified SEI layers on electrochemical performance will be assessed with practically relevant anode-free full cells (limited lithium inventory) and pouch cells (limited electrolyte supply) by determining the lithium inventory loss rates. With the in-situ engineering of a sulfide-rich lithium SEI and careful application of computational and materials characterization techniques, the project aims to (i) identify stabilizing SEI components in Li-S batteries and methods of fabricating them, (ii) establish a fundamental understanding of the composition-structure-property relationships that underlie the effect of SEI layer on the reversibility of lithium plating and stripping, and (iii) demonstrate the impact of SEI modification on electrochemical performance under realistic cell design and testing conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
以可承受的成本进行储能已成为能源部门面临的挑战之一,对于从电动汽车到可再生能源电网储能等广泛应用至关重要。锂硫电池是最有前途的下一代电池技术之一,因为锂和硫的电荷存储容量比目前锂离子电池中使用的电极材料高出十倍。此外,硫是环境友好的,廉价的,并广泛提供安全的国内供应链。尽管有这些优点,锂硫电池的商业应用受到其循环寿命差的阻碍。 该项目的重点是开发一种有效的策略,通过系统地调整阳极的表面组成和性能来提高锂硫电池的循环寿命。改性界面材料阳极层对循环寿命的影响将通过各种计算、电化学和材料表征技术进行研究。这将是实现具有高能量密度和延长循环寿命的实用锂硫电池的关键一步。这项工作还有望对硫化合物的独特化学性质产生新的见解,这些化合物在不同领域都有应用,包括光化学、催化和有机半导体。该项目还将为研究生和本科生以及历史上代表性不足的社区学院学生和教师提供广泛的跨学科培训,涉及全球重要的清洁能源领域,包括无机化学,固态物理,电化学系统,硫的独特化学性质及其形成可溶于液体电解质的多硫化物中间体的倾向,对锂硫电池中锂-金属表面形成的固体电解质界面(SEI)层产生了深远的影响。该项目的重点是开发一种系统有效的策略,用于定制SEI层的组成,以改善锂硫电池中锂电镀和剥离的可逆性。电解质和阴极添加剂将被确定为与所产生的多硫化物中间体协同工作,以在锂金属表面上形成稳定的SEI层。具体而言,高Li离子电导率LiXS三元硫化物将作为原位工程SEI组分进行研究,其中X是电负性低于硫的元素的高氧化态阳离子。假设X-S键的性质将在确定改性SEI层的性质以及因此测量的锂循环效率中起关键作用。将通过确定锂存量损失率,用实际相关的无阳极全电池(有限的锂存量)和软包电池(有限的电解质供应)评估原位改性的SEI层对电化学性能的影响。通过富硫化物锂SEI的原位工程设计以及计算和材料表征技术的仔细应用,该项目旨在(i)确定Li-S电池中稳定的SEI组分及其制造方法,(ii)建立对SEI层对锂电镀和剥离可逆性影响的组成-结构-性质关系的基本理解,以及(iii)在实际电池设计和测试条件下,证明SEI改性对电化学性能的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lithium Trithiocarbonate as a Dual‐Function Electrode Material for High‐Performance Lithium–Sulfur Batteries
- DOI:10.1002/aenm.202200680
- 发表时间:2022-04
- 期刊:
- 影响因子:27.8
- 作者:Hyunki Sul;A. Bhargav;A. Manthiram
- 通讯作者:Hyunki Sul;A. Bhargav;A. Manthiram
Thiometallate-mediated polysulfide chemistry and lithium stabilization for stable anode-free lithium-sulfur batteries
- DOI:10.1016/j.xcrp.2022.100808
- 发表时间:2022-03
- 期刊:
- 影响因子:8.9
- 作者:S. Nanda;Hooman Yaghoobnejad Asl;A. Bhargav;A. Manthiram
- 通讯作者:S. Nanda;Hooman Yaghoobnejad Asl;A. Bhargav;A. Manthiram
Taming polysulfides in sulfur-based batteries via electrolyte-soluble thiomolybdate additives
通过电解质可溶性硫代钼酸盐添加剂驯化硫基电池中的多硫化物
- DOI:10.1039/d2ta03893e
- 发表时间:2022
- 期刊:
- 影响因子:11.9
- 作者:Asl, Hooman Yaghoobnejad;Bhargav, Amruth;Manthiram, Arumugam
- 通讯作者:Manthiram, Arumugam
Implications of in situ chalcogen substitutions in polysulfides for rechargeable batteries
- DOI:10.1039/d1ee01113h
- 发表时间:2021-08
- 期刊:
- 影响因子:32.5
- 作者:S. Nanda;A. Bhargav;Z. Jiang;Xunhua Zhao;Yuanyue Liu;A. Manthiram
- 通讯作者:S. Nanda;A. Bhargav;Z. Jiang;Xunhua Zhao;Yuanyue Liu;A. Manthiram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arumugam Manthiram其他文献
Synthesis and characterization of Casub3-x/subLasubx/subCosub4-y/subCusuby/subOsub9+δ/sub cathodes for intermediate temperature solid oxide fuel cells
- DOI:
10.1016/j.ceramint.2021.09.121 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:5.600
- 作者:
K.P. Padmasree;Ke-Yu Lai;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
A reflection on lithium-ion battery cathode chemistry
关于锂离子电池阴极化学的思考
- DOI:
10.1038/s41467-020-15355-0 - 发表时间:
2020-03-25 - 期刊:
- 影响因子:15.700
- 作者:
Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Equations and electrochemical methods for measuring the interfacial charge-transfer kinetics of Li-ion battery active materials at high current densities
用于测量高电流密度下锂离子电池活性材料界面电荷转移动力学的方程和电化学方法
- DOI:
10.1016/j.electacta.2025.145875 - 发表时间:
2025-04-20 - 期刊:
- 影响因子:5.600
- 作者:
Kevin Scanlan;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Pathways for practical high-energy long-cycling lithium metal batteries
实用高能长循环锂金属电池的途径
- DOI:
10.1038/s41560-019-0338-x - 发表时间:
2019-02-25 - 期刊:
- 影响因子:60.100
- 作者:
Jun Liu;Zhenan Bao;Yi Cui;Eric J. Dufek;John B. Goodenough;Peter Khalifah;Qiuyan Li;Bor Yann Liaw;Ping Liu;Arumugam Manthiram;Y. Shirley Meng;Venkat R. Subramanian;Michael F. Toney;Vilayanur V. Viswanathan;M. Stanley Whittingham;Jie Xiao;Wu Xu;Jihui Yang;Xiao-Qing Yang;Ji-Guang Zhang - 通讯作者:
Ji-Guang Zhang
Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions
氧化钴涂层 N 和 B 掺杂石墨烯空心球作为氧还原和析氧反应的双功能电催化剂
- DOI:
10.1039/c6ta01349j - 发表时间:
2016-04 - 期刊:
- 影响因子:11.9
- 作者:
Zhongqing Jiang;Zhong-Jie Jiang;Th;avarayan Maiyalagan;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Arumugam Manthiram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arumugam Manthiram', 18)}}的其他基金
Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
- 批准号:
2321486 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
MRI: Acquisition of a Nanofabrication and Electron Microscopy System for Materials Research
MRI:采购用于材料研究的纳米加工和电子显微镜系统
- 批准号:
1827608 - 财政年份:2018
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
Microwave-Assisted Chemical Insertion for Designing Multivalent-ion Battery Hosts
用于设计多价离子电池主体的微波辅助化学插入
- 批准号:
1709081 - 财政年份:2017
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
MIRT: Exploring Unusual Properties of Transition Metal Oxides
MIRT:探索过渡金属氧化物的不寻常性质
- 批准号:
1122603 - 财政年份:2011
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
Nanostructured Palladium-based Alloy Catalysts for Fuel Cells
用于燃料电池的纳米结构钯基合金催化剂
- 批准号:
0651929 - 财政年份:2007
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
Borohydrides as Reducing Agents in the Synthesis of Inorganic Materials
硼氢化物作为无机材料合成中的还原剂
- 批准号:
9401999 - 财政年份:1994
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
Acquisition of a SQUID Magnetometer
获取 SQUID 磁力计
- 批准号:
9109080 - 财政年份:1991
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
相似国自然基金
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
GOALI: Ternary Metal Diboride Coatings with Enhanced Oxidation Resistance and Durability - Understanding Phase Formation from a Metastable Starting State
GOALI:具有增强的抗氧化性和耐久性的三元金属二硼化物涂层 - 了解亚稳态起始状态的相形成
- 批准号:
1914769 - 财政年份:2019
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
In situ total scattering studies: Formation mechanisms of ternary multiferroic bismuth ferrates
原位全散射研究:三元多铁性铁酸铋的形成机制
- 批准号:
429360100 - 财政年份:2019
- 资助金额:
$ 44.73万 - 项目类别:
Research Fellowships
Investigation of the formation of binary or ternary comlexes of quadruplex-forming DNA sequences of the insulin-linked polymorphic region (ILPR) with organic ligands and insulin
研究胰岛素连接多态性区域 (ILPR) 的四链体形成 DNA 序列与有机配体和胰岛素形成二元或三元复合物
- 批准号:
287218568 - 财政年份:2015
- 资助金额:
$ 44.73万 - 项目类别:
Research Grants
ERA-Chemistry: Searching for ultra-incompressible materials: Formation and characterisation of binary and ternary period 6 transition metal borides at very high pressures and temperatures
ERA-Chemistry:寻找超不可压缩材料:在非常高的压力和温度下二元和三元周期 6 过渡金属硼化物的形成和表征
- 批准号:
251915678 - 财政年份:2014
- 资助金额:
$ 44.73万 - 项目类别:
Research Grants
Ternary ligand-receptor complex formation by IL-5 and its inhibition by small peptides
IL-5三元配体-受体复合物的形成及其小肽的抑制
- 批准号:
234282273 - 财政年份:2013
- 资助金额:
$ 44.73万 - 项目类别:
Research Grants
RUI: Thermodynamics of Secondary Aerosol Formation: The Role of Binary and Ternary Nucleation
RUI:二次气溶胶形成的热力学:二元和三元成核的作用
- 批准号:
1213521 - 财政年份:2012
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
Syntheses of Metal Nanoparticles Having the Ability of Molecular Recognition and Improvements of Functions by Ternary Complex Formation
具有分子识别能力的金属纳米粒子的合成及三元络合物形成的功能改进
- 批准号:
20510109 - 财政年份:2008
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formation Region of Monophase with Cubic SpineL-type Structure in Mn-Fe-Ni Ternary System and Electrical Properties of Sintered-bodies Prepared from the Region
Mn-Fe-Ni三元系中立方脊柱L型结构单相的形成区域及该区域制备的烧结体的电性能
- 批准号:
17560593 - 财政年份:2005
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High pressure solubility study of liquids in the ternary system fe-si-s. Relevance for the earth`s core formation, composition and properties
Fe-Si-S 三元体系液体的高压溶解度研究。
- 批准号:
242048-2001 - 财政年份:2002
- 资助金额:
$ 44.73万 - 项目类别:
Postdoctoral Fellowships
High pressure solubility study of liquids in the ternary system fe-si-s. Relevance for the earth`s core formation, composition and properties
Fe-Si-S 三元体系液体的高压溶解度研究。
- 批准号:
242048-2001 - 财政年份:2001
- 资助金额:
$ 44.73万 - 项目类别:
Postdoctoral Fellowships