Collaborative Research: Advancing Theoretical Understanding of Accelerated Nonlinear Solvers, with Applications to Fluids

合作研究:推进对加速非线性求解器的理论理解及其在流体中的应用

基本信息

  • 批准号:
    2011519
  • 负责人:
  • 金额:
    $ 17.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Many mathematical models used to describe and predict behavior of physical, biological, chemical, and financial systems lead to systems of equations for which the problem coefficients depend on an unknown solution. These are known as nonlinear problems, and they are solved iteratively, by generating a sequence of successive approximations. For many such problems, even state of-the-art solution methods can be slow, can fail, and may not be robust with respect to changes in the underlying problem data. This project aims to develop faster and more reliable iterative solution techniques using methods which recombine information from previous approximations to create a more accurate next approximation. Theory will be developed to mathematically show how these methods improve current solution techniques, and the improved methods will be demonstrated on a wide range of systems that arise from important practical problems in optics and fluid mechanics. This project provides research training opportunities for graduate students.The efficient solution of systems of nonlinear equations is essential to the high-fidelity simulation technology necessary for predictive physical modeling throughout engineering and the life sciences. An extrapolation technique commonly referred to as Anderson acceleration (AA) has been known since 1965 to often improve the efficiency and robustness of iterative solvers for nonlinear problems. It has been successfully used in a surprisingly wide variety of applications, however theoretical understanding of its convergence properties remains largely open. Better theoretical understanding of mathematical algorithms is fundamentally important for both practical implementation and for the creation of the next generation of algorithms. The aim of this proposal is to improve theoretical understanding for AA, and to develop robust and efficient variants with improved convergence properties, both in general settings and for specific nonlinear PDEs. The main theoretical components are (1) the analysis of a variant using principal component analysis; (2) the design and analysis of robust adaptive damping and algorithmic depth strategies for noncontractive operators; (3) the analysis of the superlinear convergence of accelerated Newton iterations for degenerate problems. The proposed work will include theory and practical application of AA to several difficult nonlinear PDEs from fluid mechanics and optics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多用于描述和预测物理、生物、化学和金融系统行为的数学模型导致问题系数依赖于未知解的方程组。这些被称为非线性问题,它们是通过产生一系列连续的近似来迭代地解决的。对于许多这样的问题,即使是最先进的解决方案方法也可能很慢,可能会失败,并且对于底层问题数据的变化可能不够健壮。该项目旨在开发更快,更可靠的迭代解决技术,使用从以前的近似中重新组合信息的方法来创建更准确的下一个近似。理论将发展,以数学方式显示这些方法如何改进当前的解决技术,改进的方法将在光学和流体力学中产生的重要实际问题的广泛系统中进行演示。本项目为研究生提供研究训练机会。非线性方程组的有效解对于整个工程和生命科学中预测物理建模所需的高保真仿真技术至关重要。自1965年以来,一种通常被称为安德森加速(AA)的外推技术已经被人们所知,它经常提高非线性问题迭代求解器的效率和鲁棒性。它已经成功地应用于各种各样的应用中,然而,对其收敛性质的理论理解仍然很大程度上是开放的。对数学算法更好的理论理解对于实际实现和下一代算法的创建都是至关重要的。本提案的目的是提高对AA的理论理解,并开发具有改进收敛特性的鲁棒和高效变体,无论是在一般设置还是特定的非线性偏微分方程。主要理论成分有:(1)用主成分分析法对变量进行分析;(2)非收缩算子鲁棒自适应阻尼和算法深度策略的设计与分析;(3)退化问题加速牛顿迭代的超线性收敛性分析。提出的工作将包括理论和实际应用的几个困难的非线性偏微分方程从流体力学和光学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An algorithm for the grade-two rheological model
二级流变模型的算法
Anderson acceleration for a regularized Bingham model
正则化宾汉姆模型的安德森加速
Transport equations with inflow boundary conditions
具有流入边界条件的输运方程
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sara Pollock其他文献

Dynamically accelerating the power iteration with momentum
以动量动态加速功率迭代
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian Austin;Sara Pollock;Yunrong Zhu
  • 通讯作者:
    Yunrong Zhu
Analysis of the Picard-Newton iteration for the Navier-Stokes equations: global stability and quadratic convergence
纳维-斯托克斯方程的皮卡德-牛顿迭代分析:全局稳定性和二次收敛
  • DOI:
    10.48550/arxiv.2402.12304
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sara Pollock;L. Rebholz;Xuemin Tu;Menyging Xiao
  • 通讯作者:
    Menyging Xiao
Analysis of an Adaptive Safeguarded Newton-Anderson Algorithm with Applications to Fluid Problems
自适应保护牛顿-安德森算法及其在流体问题中的应用分析
  • DOI:
    10.48550/arxiv.2402.09295
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matt Dallas;Sara Pollock;L. Rebholz
  • 通讯作者:
    L. Rebholz
Computational analysis of a contraction rheometer for the grade-two fluid model
二级流体模型收缩流变仪的计算分析
  • DOI:
    10.48550/arxiv.2404.03450
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sara Pollock;L. R. Scott
  • 通讯作者:
    L. R. Scott

Sara Pollock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sara Pollock', 18)}}的其他基金

CAREER: Extrapolation Methods for Matrix and Tensor Eigenvalue Problems
职业:矩阵和张量特征值问题的外推方法
  • 批准号:
    2045059
  • 财政年份:
    2021
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Continuing Grant
Regularized Adaptive Methods for Classes of Nonlinear Partial Differential Equations
非线性偏微分方程类的正则自适应方法
  • 批准号:
    1852876
  • 财政年份:
    2018
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Continuing Grant
Regularized Adaptive Methods for Classes of Nonlinear Partial Differential Equations
非线性偏微分方程类的正则自适应方法
  • 批准号:
    1719849
  • 财政年份:
    2017
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414608
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414605
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414604
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
  • 批准号:
    2314916
  • 财政年份:
    2023
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了