Regularized Adaptive Methods for Classes of Nonlinear Partial Differential Equations
非线性偏微分方程类的正则自适应方法
基本信息
- 批准号:1852876
- 负责人:
- 金额:$ 9.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear diffusion equations appear often in simulations of physical processes such as heat conduction, groundwater flow, and flow in porous media. Such equations appear in environmentally relevant modeling problems describing the distribution of subsurface contaminants. In these nonlinear problems, the diffusion coefficient is dependent on the solution and possibly its coordinates; as such, a numerical solution to the model cannot be determined by direct means. Generally, solutions can only be found by solving a sequence of simpler approximate problems, and making successive improvements to the solution. Convergence of the scheme may fail however if this is carried out in a standard way, and current numerical simulations can be limited by the failure of these standard iterative techniques. The focus of this work is on the mathematically rigorous development of stable and convergent iterative numerical algorithms to efficiently solve nonlinear diffusion equations, addressing a substantial problem in scientific computing for realistic physical modeling.The technical goal of this project is to develop efficient and robust simulation technology for classes of nonlinear diffusion equations. Finite element solutions for nonlinear diffusion problems are known to have good approximation properties in the asymptotic regime, but a sound methodology to compute those discrete solutions has yet to be developed. Regularized adaptive methods will be developed within the framework of adaptive finite element methods, for which (1) the iterates converge to discrete solutions; and (2) the discrete solutions converge to the solution of the partial differential equation, as the mesh is selectively refined. One of the aims of this work is to develop guiding principles for the regularization of the induced discrete problems in concert with error indicators to determine the mesh refinement. The combination of the regularization and error indicators should both allow the computation of a discrete solution, and guarantee the convergence to a correct solution from a theoretical standpoint. Computational methods backed up by sound mathematical theory will be developed for representative classes of model problems, and the developed methods will be extended to larger, computationally-demanding simulations, for example to model the distribution of C02 injected into the earth's subsurface as a potential means for long-term storage. It is expected that the technical advances made in the course of this project will advance the realization of efficient and accurate numerical simulation tools that allow the practical modeling of problems with realistic physical attributes.
非线性扩散方程经常出现在热传导、地下水流动和多孔介质流动等物理过程的模拟中。这种方程出现在描述地下污染物分布的环境相关建模问题中。在这些非线性问题中,扩散系数依赖于解并可能依赖于它的坐标;因此,该模型的数值解不能用直接方法确定。一般来说,只能通过解决一系列更简单的近似问题,并对解决方案进行连续改进来找到解决方案。然而,如果以标准的方式进行,该方案的收敛可能会失败,并且当前的数值模拟可能受到这些标准迭代技术失败的限制。这项工作的重点是在数学上严格发展稳定和收敛的迭代数值算法,以有效地解决非线性扩散方程,解决现实物理建模科学计算中的实质性问题。本课题的技术目标是开发高效、鲁棒的非线性扩散方程仿真技术。众所周知,非线性扩散问题的有限元解在渐近范围内具有良好的近似性质,但尚未开发出一种可靠的方法来计算这些离散解。正则化自适应方法将在自适应有限元方法的框架内发展,其中(1)迭代收敛于离散解;(2)由于网格有选择地细化,离散解收敛于偏微分方程的解。这项工作的目的之一是为与误差指标一致的诱导离散问题的正则化制定指导原则,以确定网格精细化。正则化和误差指标的结合应该既允许离散解的计算,又保证从理论的角度收敛到正确的解。有可靠的数学理论支持的计算方法将用于有代表性的模型问题,并且已开发的方法将扩展到更大的、对计算有要求的模拟,例如,模拟注入地球地下的二氧化碳的分布,作为长期储存的潜在手段。预计在这个项目过程中取得的技术进步将推动实现高效和准确的数值模拟工具,使具有现实物理属性的问题的实际建模成为可能。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A matrix analysis approach to discrete comparison principles for nonmonotone PDE
非单调偏微分方程离散比较原理的矩阵分析方法
- DOI:10.1007/s11075-019-00713-x
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Pollock, Sara;Zhu, Yunrong
- 通讯作者:Zhu, Yunrong
A Proof That Anderson Acceleration Improves the Convergence Rate in Linearly Converging Fixed-Point Methods (But Not in Those Converging Quadratically)
- DOI:10.1137/19m1245384
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Claire Evans;Sara N. Pollock;L. Rebholz;Mengying Xiao
- 通讯作者:Claire Evans;Sara N. Pollock;L. Rebholz;Mengying Xiao
Extrapolating the Arnoldi Algorithm to Improve Eigenvector Convergence
外推 Arnoldi 算法以提高特征向量收敛性
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Pollock, S.;Scott, L. R.
- 通讯作者:Scott, L. R.
Discrete comparison principles for quasilinear elliptic PDE
拟线性椭圆偏微分方程的离散比较原理
- DOI:10.1016/j.apnum.2020.04.013
- 发表时间:2020
- 期刊:
- 影响因子:2.8
- 作者:Pollock, Sara;Zhu, Yunrong
- 通讯作者:Zhu, Yunrong
Benchmarking results for the Newton–Anderson method
牛顿安德森方法的基准测试结果
- DOI:10.1016/j.rinam.2020.100095
- 发表时间:2020
- 期刊:
- 影响因子:2
- 作者:Pollock, Sara;Schwartz, Hunter
- 通讯作者:Schwartz, Hunter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Pollock其他文献
Dynamically accelerating the power iteration with momentum
以动量动态加速功率迭代
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christian Austin;Sara Pollock;Yunrong Zhu - 通讯作者:
Yunrong Zhu
Analysis of the Picard-Newton iteration for the Navier-Stokes equations: global stability and quadratic convergence
纳维-斯托克斯方程的皮卡德-牛顿迭代分析:全局稳定性和二次收敛
- DOI:
10.48550/arxiv.2402.12304 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sara Pollock;L. Rebholz;Xuemin Tu;Menyging Xiao - 通讯作者:
Menyging Xiao
Analysis of an Adaptive Safeguarded Newton-Anderson Algorithm with Applications to Fluid Problems
自适应保护牛顿-安德森算法及其在流体问题中的应用分析
- DOI:
10.48550/arxiv.2402.09295 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matt Dallas;Sara Pollock;L. Rebholz - 通讯作者:
L. Rebholz
Computational analysis of a contraction rheometer for the grade-two fluid model
二级流体模型收缩流变仪的计算分析
- DOI:
10.48550/arxiv.2404.03450 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sara Pollock;L. R. Scott - 通讯作者:
L. R. Scott
Sara Pollock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara Pollock', 18)}}的其他基金
CAREER: Extrapolation Methods for Matrix and Tensor Eigenvalue Problems
职业:矩阵和张量特征值问题的外推方法
- 批准号:
2045059 - 财政年份:2021
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing Theoretical Understanding of Accelerated Nonlinear Solvers, with Applications to Fluids
合作研究:推进对加速非线性求解器的理论理解及其在流体中的应用
- 批准号:
2011519 - 财政年份:2020
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Regularized Adaptive Methods for Classes of Nonlinear Partial Differential Equations
非线性偏微分方程类的正则自适应方法
- 批准号:
1719849 - 财政年份:2017
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Risk-Based Methods for Robust, Adaptive, and Equitable Flood Risk Management in a Changing Climate
职业:在气候变化中实现稳健、适应性和公平的洪水风险管理的基于风险的方法
- 批准号:
2238060 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Better access to and integration of mental health and addiction services through navigation - A mixed-methods adaptive pragmatic clinical trial
通过导航更好地获取和整合心理健康和成瘾服务 - 混合方法适应性实用临床试验
- 批准号:
487553 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Operating Grants
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
- 批准号:
2339804 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Mixed-Methods Evaluation of Mobile Health Adaptive Learning Training for Pediatric Healthcare Workers in Tanzania
坦桑尼亚儿科医护人员移动健康适应性学习培训的混合方法评估
- 批准号:
10863717 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
- 批准号:
23K19981 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Doctoral Dissertation Research: Preassembly Methods for Cognitive Diagnostic Multistage Adaptive Testing
博士论文研究:认知诊断多级自适应测试的预组装方法
- 批准号:
2242094 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Better access to and integration of mental health and addiction services through navigation - A mixed-methods adaptive pragmatic clinical trial
通过导航更好地获取和整合心理健康和成瘾服务 - 混合方法适应性实用临床试验
- 批准号:
481600 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Operating Grants
Adaptive and Robust Methods in Statistical Machine Learning
统计机器学习中的自适应和鲁棒方法
- 批准号:
2748915 - 财政年份:2022
- 资助金额:
$ 9.27万 - 项目类别:
Studentship
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2022
- 资助金额:
$ 9.27万 - 项目类别:
Discovery Grants Program - Individual