CRCNS: Discovering how touch sensors in the bat’s “hand-wing” enable agile flight control
CRCNS:探索蝙蝠“手翼”中的触摸传感器如何实现敏捷的飞行控制
基本信息
- 批准号:2011619
- 负责人:
- 金额:$ 135万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bats perform feats of aerial agility that are unique in the animal kingdom, and completely unparalleled by even the very best robotic flying machines. This project aims to discover the fundamental principles that underlie how these animals achieve such superior flight control performance. Bat flight is powered by a “hand-wing,” i.e. the wing is actually an evolutionary adaptation of the mammalian forelimb. As such, the bat hand-wing shares the same basic anatomy as the human hand and is highly sensitive to physical forces. The bat hand-wing is highly deformable and controllable, and is unlike any artificial wing that has ever been successfully constructed. The bat hand-wing is built from a very thin membrane that stretches across its fingers and is covered with small wind-sensitive hairs that enable the animal to “feel” the complex flow of air that envelopes its wing. This unique set of flight and sensing adaptations presents a powerful model to investigate the mechanisms of sensing, brain computation, and movement control. The multidisciplinary research team will characterize and uncover the complex coupling relationships between aerodynamics, tactile sensing, and neural processing using a combination of engineering and biological techniques. This project will lead to deeper understanding of biological flight control, and will lend insights into ingredients that could one day be used in developing new robotic aerial vehicles capable of bat-like flight performance. This project integrates state-of-the-art experimental measurements and computational flow modeling with behavioral and neurophysiological experimentation and dynamical control systems neural modeling. Using a multidisciplinary approach, the team will test the hypothesis that bat wing sensors carry information about complex airflow patterns and forces to the sensory cortex. The team will also elucidate sensorimotor mechanisms that guide wing adjustments to enhance lift and prevent stall. To achieve these goals, the research includes, : 1) Quantifying the mechanical stimulus inputs to receptors on the bat hand-wing using stereo-particle-image velocimetry, digital image correlation and computational fluid dynamic modeling; 2) Encoding mechanosensory signals from the wings via multichannel neural recordings from bat primary somatosensory cortex; 3) Closed-loop modeling and real-time control based on decoded output of neural signals. This research will yield a deeper understanding of sensorimotor feedback in biological systems while also contributing novel computational and experimental tools in the arena of sensorimotor control, biophysics, and mechanics, with wide applications to many arenas of neuroscience. The project will leverage the JHU’s Women in Science and Engineering (WISE) program and Baltimore Polytechnic’s Ingenuity Project to engage high school students from diverse backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蝙蝠表演空中敏捷的壮举是动物王国中独一无二的,即使是最好的机器人飞行器也无法比拟。该项目旨在发现这些动物如何实现这种上级飞行控制性能的基本原理。蝙蝠的飞行是由“手翼”提供动力的,也就是说,翅膀实际上是哺乳动物前肢的进化适应。因此,蝙蝠的手翼与人类的手有着相同的基本解剖结构,并且对物理力量非常敏感。蝙蝠的手翼是高度可变形和可控的,不同于任何已经成功建造的人造翅膀。蝙蝠的手翼是由一层非常薄的膜构成的,这层膜延伸到它的手指上,上面覆盖着对风敏感的小绒毛,使蝙蝠能够“感觉”包裹着翅膀的复杂气流。这套独特的飞行和感知适应提供了一个强大的模型来研究感知,大脑计算和运动控制的机制。多学科研究团队将利用工程和生物技术相结合的方法来表征和揭示空气动力学、触觉传感和神经处理之间的复杂耦合关系。该项目将加深对生物飞行控制的理解,并将深入了解有一天可能用于开发能够像蝙蝠一样飞行的新型机器人飞行器的成分。该项目将最先进的实验测量和计算流建模与行为和神经生理学实验以及动态控制系统神经建模相结合。使用多学科的方法,该团队将测试蝙蝠翅膀传感器将复杂的气流模式和力量的信息传递到感觉皮层的假设。该小组还将阐明感觉运动机制,指导机翼调整,以提高升力和防止失速。为了实现这些目标,本研究包括:1)利用立体粒子图像测速技术、数字图像相关技术和计算流体动力学模型对蝙蝠手翼上感受器的机械刺激输入进行量化:2)利用蝙蝠初级躯体感觉皮层的多通道神经记录对来自手翼的机械感觉信号进行编码; 3)基于神经信号解码输出的闭环建模和实时控制。这项研究将产生更深入的了解在生物系统中的感觉运动反馈,同时也有助于新的计算和实验工具,在感觉运动控制,生物物理学和力学的竞技场,广泛应用于许多领域的神经科学。该项目将利用JHU的妇女在科学和工程(WISE)计划和巴尔的摩理工学院的Inconsistency项目,以吸引来自不同背景的高中生。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia Moss其他文献
Cynthia Moss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia Moss', 18)}}的其他基金
2020 International Congress for Neuroethology in Lisbon, Portugal from July 26-31, 2020
2020年国际神经行为学大会将于2020年7月26日至31日在葡萄牙里斯本举行
- 批准号:
1954743 - 财政年份:2020
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
NCS-FO: Active Listening and Attention in 3D Natural Scenes
NCS-FO:3D 自然场景中的主动聆听和注意力
- 批准号:
1734744 - 财政年份:2017
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
CRCNS: Adaptive perceptual-motor feedback for the analysis of complex scenes
CRCNS:用于分析复杂场景的自适应感知运动反馈
- 批准号:
1460149 - 财政年份:2014
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
Conference: ICN, University of Maryland 2012, August 5-10, 2012
会议:ICN,马里兰大学 2012,2012 年 8 月 5-10 日
- 批准号:
1226873 - 财政年份:2012
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
CRCNS: Adaptive perceptual-motor feedback for the analysis of complex scenes
CRCNS:用于分析复杂场景的自适应感知运动反馈
- 批准号:
1010193 - 财政年份:2010
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
Collaborative Research in Computational Neuroscience (CRCNS) PI Meeting held on June 3-5, 2007 in College Park, Maryland
计算神经科学合作研究 (CRCNS) PI 会议于 2007 年 6 月 3 日至 5 日在马里兰州大学公园市举行
- 批准号:
0735167 - 财政年份:2007
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
Active Sensing for Three-Dimensional Auditory Localization
用于三维听觉定位的主动传感
- 批准号:
0111973 - 财政年份:2001
- 资助金额:
$ 135万 - 项目类别:
Continuing Grant
相似海外基金
Discovering How Root Sense Hard Soils
探索根系如何感知硬土
- 批准号:
EP/Y036697/1 - 财政年份:2024
- 资助金额:
$ 135万 - 项目类别:
Research Grant
Discovering How Stress Induced Histomorphogenesis Effects the Long-term Leaching from an Implanted Medical Device using Phase Field Models
使用相场模型发现应力诱导的组织形态发生如何影响植入医疗器械的长期浸出
- 批准号:
2309538 - 财政年份:2024
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
Discovering how autophagy is sufficient to extend yeast replicative lifespan
发现自噬如何足以延长酵母复制寿命
- 批准号:
10744971 - 财政年份:2023
- 资助金额:
$ 135万 - 项目类别:
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 135万 - 项目类别:
Standard Grant
3/4 The Autism Sequencing Consortium: Discovering autism risk genes and how they impact core features of the disorder
3/4 自闭症测序联盟:发现自闭症风险基因以及它们如何影响该疾病的核心特征
- 批准号:
10420099 - 财政年份:2022
- 资助金额:
$ 135万 - 项目类别:
3/4 The Autism Sequencing Consortium: Discovering autism risk genes and how they impact core features of the disorder
3/4 自闭症测序联盟:发现自闭症风险基因以及它们如何影响该疾病的核心特征
- 批准号:
10579314 - 财政年份:2022
- 资助金额:
$ 135万 - 项目类别:
2/4 The Autism Sequencing Consortium: Discovering autism risk genes and how they impact core features of the disorder
2/4 自闭症测序联盟:发现自闭症风险基因以及它们如何影响该疾病的核心特征
- 批准号:
10579317 - 财政年份:2022
- 资助金额:
$ 135万 - 项目类别:
1/4 - The Autism Sequencing Consortium: Discovering autism risk genes and how they impact core features of the disorder
1/4 - 自闭症测序联盟:发现自闭症风险基因以及它们如何影响该疾病的核心特征
- 批准号:
10580072 - 财政年份:2022
- 资助金额:
$ 135万 - 项目类别:
The rare biosphere; discovering how soil bacteria live on air
稀有的生物圈;
- 批准号:
DP220103430 - 财政年份:2022
- 资助金额:
$ 135万 - 项目类别:
Discovery Projects
4/4 - The Autism Sequencing Consortium: Discovering autism risk genes and how they impact core features of the disorder
4/4 - 自闭症测序联盟:发现自闭症风险基因以及它们如何影响该疾病的核心特征
- 批准号:
10433743 - 财政年份:2022
- 资助金额:
$ 135万 - 项目类别: