Expansion Dynamics and Prethermalization in Ultracold Quantum Gases

超冷量子气体的膨胀动力学和预热

基本信息

  • 批准号:
    2012145
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Progress in science in general, and physics in particular, comes in many flavors. Often experimental observations of an unexpected phenomenon, such as high-temperature superconductivity, trigger the development of new theories. It also happens sometimes that "thought experiments" result in new theories, such as general relativity, that are later tested in actual experiments. In the field of ultracold quantum gases, gases at temperatures that are in the nano-Kelvin regime trapped by means of magnetic fields in ultrahigh vacuum (the ultracold counterpart of plasmas), experimental and theoretical developments often go hand in hand. Experiments with ultracold quantum gases have motivated many recent developments in statistical physics. They have also tested theoretical predictions with an exceptional accuracy. This project involves a close collaboration between the theoretical group of the PI and experimental groups in the US and Europe. The goal is to develop and test increasingly sophisticated theoretical descriptions of nonequilibrium quantum systems while contributing to the development and testing of progressively more accurate and controllable experimental platforms. Under this award, graduate students will be trained in quantum physics and computational physics (e.g., they will write and run codes for supercomputers). The PI will deliver lectures about the experimental and theoretical developments at the local high school to motivate students to pursue careers in STEM. The PI will study the quantum dynamics of ultracold one-dimensional (1D) gases locally far from equilibrium, as well as their expansion dynamics in 1D. After long expansion times in 1D, the latter dynamics enables the experimental measurement of rapidity distributions, long-thought "theoretical constructs" that were recently measured in a collaboration between the PI and groups at Penn State. A central goal of the new studies will be to test the recently developed theory of generalized hydrodynamics (GHD), and to identify corrections beyond GHD that need to be accounted for theoretically. A second topic to be explored is the dynamics of systems with weakly broken integrability (and, more generally, weakly broken conservation laws) to experimentally test a recently developed theory of prethermalization, and to search for its limits of applicability. A central goal here will be to develop theoretical/experimental tools to predict/measure thermalization rates in a broad range of systems. In addition, the PI's group will develop generalizations of a recently introduced theoretical approach to study equilibrium and far-from-equilibrium dynamics of impenetrable SU(N) fermions, and will study the off-diagonal matrix elements of observables in the eigenstates of integrable interacting Hamiltonians to understand what they can teach us about quantum dynamics and transport close to integrability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一般来说,科学的进步,特别是物理学的进步,是以多种形式出现的。通常,对一个意想不到的现象的实验观察,如高温超导,会引发新理论的发展。有时也会发生“思想实验”导致新的理论,如广义相对论,后来在实际实验中得到检验。在超冷量子气体领域,气体的温度在纳米开尔文制度下被磁场捕获在真空中(等离子体的超冷对应物),实验和理论的发展往往齐头并进。超冷量子气体的实验激发了统计物理学的许多最新发展。他们还以极高的准确性检验了理论预测。该项目涉及PI的理论小组与美国和欧洲的实验小组之间的密切合作。其目标是开发和测试非平衡量子系统的日益复杂的理论描述,同时有助于开发和测试越来越精确和可控的实验平台。根据该奖项,研究生将接受量子物理和计算物理方面的培训(例如,他们将为超级计算机编写和运行代码)。PI将在当地高中提供有关实验和理论发展的讲座,以激励学生追求STEM职业。PI将研究局部远离平衡的超冷一维(1D)气体的量子动力学,以及它们在1D中的膨胀动力学。在一维的长时间膨胀之后,后者的动力学使得实验测量快度分布成为可能,这是一个长期思考的“理论结构”,最近在PI和宾夕法尼亚州立大学的团队之间的合作中测量到。新研究的一个中心目标是测试最近开发的广义流体力学(GHD)理论,并确定需要在理论上解释的GHD以外的修正。第二个要探讨的主题是系统的动力学弱破可积性(更一般地说,弱破守恒律)实验测试最近开发的理论预热化,并寻找其适用性的限制。这里的一个中心目标将是开发理论/实验工具来预测/测量各种系统中的热化率。此外,PI的小组将开发最近引入的理论方法的推广,以研究不可穿透的SU(N)费米子的平衡和远离平衡的动力学,并将研究关闭-可积相互作用哈密顿量的本征态中可观测量的对角矩阵元素,以了解它们可以教我们关于量子动力学和接近可积性的传输的知识。该奖项反映了NSF的法定使命,并已通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prethermalization, thermalization, and Fermi's golden rule in quantum many-body systems
  • DOI:
    10.1103/physrevb.104.184302
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Krishnanand Mallayya;M. Rigol
  • 通讯作者:
    Krishnanand Mallayya;M. Rigol
Eigenstate Entanglement Entropy in Random Quadratic Hamiltonians
随机二次哈密顿量中的本征态纠缠熵
  • DOI:
    10.1103/physrevlett.125.180604
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Łydżba, Patrycja;Rigol, Marcos;Vidmar, Lev
  • 通讯作者:
    Vidmar, Lev
Average entanglement entropy of midspectrum eigenstates of quantum-chaotic interacting Hamiltonians
量子混沌相互作用哈密顿量的中谱本征态的平均纠缠熵
  • DOI:
    10.1103/physreve.107.064119
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kliczkowski, M.;Świętek, R.;Vidmar, L.;Rigol, M.
  • 通讯作者:
    Rigol, M.
Signatures of Quantum Phase Transitions after Quenches in Quantum Chaotic One-Dimensional Systems
  • DOI:
    10.1103/physrevx.11.031062
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    A. Haldar;Krishnanand Mallayya;M. Heyl;F. Pollmann;M. Rigol;Arnab Das
  • 通讯作者:
    A. Haldar;Krishnanand Mallayya;M. Heyl;F. Pollmann;M. Rigol;Arnab Das
Generalized Thermalization in Quantum-Chaotic Quadratic Hamiltonians
量子混沌二次哈密顿量的广义热化
  • DOI:
    10.1103/physrevlett.131.060401
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Łydżba, Patrycja;Mierzejewski, Marcin;Rigol, Marcos;Vidmar, Lev
  • 通讯作者:
    Vidmar, Lev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcos Rigol其他文献

An exactly solvable model for the integrability–chaos transition in rough quantum billiards
粗糙量子台球中可积性-混沌转变的一个精确可解模型
  • DOI:
    10.1038/ncomms1653
  • 发表时间:
    2012-01-24
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Maxim Olshanii;Kurt Jacobs;Marcos Rigol;Vanja Dunjko;Harry Kennard;Vladimir A. Yurovsky
  • 通讯作者:
    Vladimir A. Yurovsky
Exact numerical approach to hard-core bosons on one-dimensional lattices
  • DOI:
    10.1016/j.cpc.2005.03.092
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marcos Rigol;Alejandro Muramatsu
  • 通讯作者:
    Alejandro Muramatsu
Hard-core Bosons and Spinless Fermions Trapped on 1D Lattices
  • DOI:
    10.1007/s10909-005-2274-3
  • 发表时间:
    2005-02-15
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Marcos Rigol;Alejandro Muramatsu
  • 通讯作者:
    Alejandro Muramatsu
Singlet pairing and superconductivity in .t−J. ladders with Mott insulating stripes
.tâJ 中的单线态配对和超导性。
  • DOI:
    10.1103/physrevb.98.121112
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chen Cheng;Rubem Mondaini;Marcos Rigol
  • 通讯作者:
    Marcos Rigol
Kaleidoscope of exotic quantum phases in a frustrated XY model.
受挫 XY 模型中奇异量子相的万花筒。
  • DOI:
    10.1103/physrevlett.107.077201
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    C. Varney;Kai Sun;V. Galitski;Marcos Rigol
  • 通讯作者:
    Marcos Rigol

Marcos Rigol的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcos Rigol', 18)}}的其他基金

Quantum Dynamics of Near-One-Dimensional Systems
近一维系统的量子动力学
  • 批准号:
    2309146
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Toward an Ab-initio Understanding of Ultracold Boson Experiments in One Dimension
从头开始理解一维超冷玻色子实验
  • 批准号:
    1707482
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: Correlated Superfluids and Insulators of Ultracold Fermionic Atomic Gases
合作研究:超冷费米原子气体的相关超流体和绝缘体
  • 批准号:
    1318303
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative Research: Correlated Superfluids and Insulators of Ultracold Fermionic Atomic Gases
合作研究:超冷费米原子气体的相关超流体和绝缘体
  • 批准号:
    1205799
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了