Collaborative Research: Next-Generation Cutting Planes: Compression, Automation, Diversity, and Computer-Assisted Mathematics
合作研究:下一代切割面:压缩、自动化、多样性和计算机辅助数学
基本信息
- 批准号:2012429
- 负责人:
- 金额:$ 17.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mixed-integer optimization is a powerful mathematical decision-making technology related to operations research, data sciences, and artificial intelligence. This project considers applications in which high-stake decisions need to be made quickly and account for unknown future event or risk. In such applications, simulation methods and machine learning cannot give sufficient confidence for protecting against the possibility of catastrophic failures. Instead, one requires multi-parametric optimization to precompute responses, certify their safety, and guarantee the level of performance. In this direction, the investigators will study a key component of optimization algorithms called general purpose cutting planes in a novel multi-parametric setting suitable for process control in chemical engineering and optimizing compilers for high-performance computing platforms, aiming for major theoretical and computational advances that will generalize to many important applications. Broader impacts include the training of undergraduate and graduate students in computational mathematics and research skills, as well as development of high-quality open-source research software, and of further connections between several research communities within mathematics, computer science, and engineering.Mixed-integer (linear and nonlinear) optimization is concerned with finite-dimensional, non-convex optimization problems that include discrete decision variables such as those that model "yes/no" decisions. Systems of this type arise in all areas of industry and the sciences. Algorithms for mixed-integer optimization build upon convex optimization technology by relaxation, approximation, convexification, and decomposition techniques. Increases in system size in the presence of Big Data technologies creates new challenges that need to be addressed by a next generation of algorithms. This project studies convexification, specifically, cutting planes in multi-row and multi-cut cutting plane systems that are effective and efficient from the aspects of compression, automation, and diversity. In particular, spaces of extreme continuous piecewise linear cut-generating functions with prescribed features will be computed; these consist of semi-algebraic cells, parametrizing sub-additive piecewise linear functions, glued at their boundaries. The computation of each cell requires the proof of a theorem, and automated theorem proving technology, based on metaprogramming and semi-algebraic computations, will be developed. The investigators will apply the new cutting plane techniques to two target applications for which guaranteed correctness and performance is mission-critical: model predictive control in chemical process engineering and optimizing compilers for high-performance computing platforms. The multi-parametric optimization problems in both applications will benefit from the parametric nature of the new cutting planes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
混合整数优化是一种与运筹学、数据科学和人工智能相关的强大的数学决策技术。此项目考虑需要快速做出高风险决策并考虑未知未来事件或风险的应用程序。在这样的应用中,模拟方法和机器学习不能为防范灾难性故障的可能性提供足够的信心。取而代之的是,需要多参数优化来预计算响应、证明其安全性并保证性能水平。在这个方向上,研究人员将在一种新的多参数设置中研究优化算法的一个关键组件,称为通用切割平面,该设置适合于化学工程中的过程控制和高性能计算平台的优化编译器,旨在取得重大的理论和计算进展,这些进展将推广到许多重要的应用。更广泛的影响包括本科生和研究生在计算数学和研究技能方面的培训,以及高质量开源研究软件的开发,以及数学、计算机科学和工程领域内几个研究社区之间的进一步联系。混合整数(线性和非线性)优化涉及有限维、非凸优化问题,其中包括离散决策变量,如那些模拟是/否决策的变量。这种类型的系统出现在工业和科学的所有领域。混合整数优化算法通过松弛、逼近、凸化和分解技术建立在凸优化技术的基础上。随着大数据技术的出现,系统规模的增加带来了新的挑战,需要下一代算法来解决。本课题从压缩、自动化、多样性等方面研究凸化问题,即多排多割平面系统中有效且高效的割平面问题。具体地说,将计算具有指定特征的极连续分段线性割生成函数的空间;这些空间由半代数单元、参数化次可加分段线性函数、粘在其边界处的单元组成。每个单元的计算需要一个定理的证明,并且将开发基于元编程和半代数计算的自动定理证明技术。研究人员将把新的切割平面技术应用于两个目标应用程序,对它们来说,保证正确性和性能是关键任务:化学过程工程中的模型预测控制和高性能计算平台的优化编译器。这两个应用中的多参数优化问题将受益于新切割平面的参数性质。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Facets, weak facets, and extreme functions of the Gomory–Johnson infinite group problem
Gomory-Johnson 无限群问题的面、弱面和极限函数
- DOI:10.1007/s10107-020-01477-2
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Köppe, Matthias;Zhou, Yuan
- 通讯作者:Zhou, Yuan
Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. VII. Inverse Semigroup Theory, Closures, Decomposition of Perturbations
Gomory 和 Johnson 的无限群问题中的等变扰动。
- DOI:10.5802/ojmo.16
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hildebrand, Robert;Köppe, Matthias;Zhou, Yuan
- 通讯作者:Zhou, Yuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Zhou其他文献
Cryptanalysis and Improvement of a Block cipher Based on Multiple Chaotic system
基于多重混沌系统的分组密码的密码分析与改进
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yuan Zhou;Jun He;Zhibin Li;Haifeng Qian - 通讯作者:
Haifeng Qian
Polychromatic Kerr nonlinearity within electromagnetically induced transparency window
电磁感应透明窗口内的多色克尔非线性
- DOI:
10.1016/j.rinp.2021.104858 - 发表时间:
2021 - 期刊:
- 影响因子:5.3
- 作者:
Guang;C. Shan;De;Qingping Hu;Dong;Yuan Zhou - 通讯作者:
Yuan Zhou
Entrepreneurial innovation problems associated with the dynamic growth of university spin-outs in China: a capabilities perspective
与中国大学衍生企业动态增长相关的创业创新问题:能力视角
- DOI:
10.1504/ijeim.2010.035087 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yuan Zhou;T. Minshall;C. Turner - 通讯作者:
C. Turner
Interfacing a Topological Qubit with a Spin Qubit in a Hybrid Quantum System
在混合量子系统中连接拓扑量子位与自旋量子位
- DOI:
10.1103/physrevapplied.11.044026 - 发表时间:
2019 - 期刊:
- 影响因子:4.6
- 作者:
Bo Li;Peng-Bo Li;Yuan Zhou;Jie Liu;Hong-Rong Li;Fu-Li Li - 通讯作者:
Fu-Li Li
Exploring the Development of Research, Technology and Business of Machine Tool Domain in New-Generation Information Technology Environment Based on Machine Learning
基于机器学习的新一代信息技术环境下机床领域研究、技术和业务的发展探索
- DOI:
10.3390/su11123316 - 发表时间:
2019-05 - 期刊:
- 影响因子:3.9
- 作者:
Jihong Chen;Kai Zhang;Yuan Zhou;Yufei Liu;Lingfeng Li;Zheng Chen;Li Yin - 通讯作者:
Li Yin
Yuan Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Zhou', 18)}}的其他基金
Collaborative Research: AF: Small: Parallel Reinforcement Learning with Communication and Adaptivity Constraints
协作研究:AF:小型:具有通信和适应性约束的并行强化学习
- 批准号:
2006526 - 财政年份:2020
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325312 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329758 - 财政年份:2024
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
- 批准号:
2308306 - 财政年份:2023
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 17.98万 - 项目类别:
Standard Grant














{{item.name}}会员




