Collaborative Research: Nonoscillatory Phase Methods for the Variable Coefficient Helmholtz Equation in the High-Frequency Regime
合作研究:高频域下变系数亥姆霍兹方程的非振荡相法
基本信息
- 批准号:2012487
- 负责人:
- 金额:$ 18.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The importance of the numerical simulation of physical phenomena by computers cannot be overstated. Such computations have become essential tools both in scientific research and in industrial research and development. This project concerns the numerical simulation of the scattering of waves. Such simulations have applications to sonar and radar, as well as in medical imaging, geophysics, and many other applications. Wave phenomena become more complicated to model as the frequency of the wave increases, and our current ability to accurately model high-frequency waves is quite limited. This project seeks to develop new methods for modeling high-frequency waves efficiently and to high accuracy. The project provides research training opportunities for graduate students. The numerical simulation of the scattering of waves from inhomogeneous media has important applications in radar and sonar, medical imaging, geophysics, and a host of other scientific applications. In many cases of interest, such simulations can be performed by solving the variable coefficient Helmholtz equation. The solutions of this equation are oscillatory, and the difficulty of calculating them using conventional approaches grows quickly with the frequency of the oscillations. Recently, one of the investigators developed a new class of solvers for the variable coefficient Helmholtz equation that achieve extremely high accuracy and have run times that scale much more slowly with increasing frequency than conventional solvers. They operate by solving the nonlinear Riccati equation that is satisfied by the logarithms of solutions of the Helmholtz equation. Currently, these solvers only apply in special cases. This project aims to extend them to the general case to develop a method for the variable coefficient Helmholtz equation that is significantly faster than current techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用计算机对物理现象进行数值模拟的重要性怎么强调也不过分。这种计算已经成为科学研究和工业研究与发展的重要工具。本课题是关于波浪散射的数值模拟。这种模拟可以应用于声纳和雷达,以及医学成像,生物物理学和许多其他应用。随着波浪频率的增加,波浪现象的建模变得更加复杂,而我们目前精确建模高频波浪的能力非常有限。本项目旨在开发新的方法,以有效地模拟高频波和高精度。该项目为研究生提供研究培训机会。非均匀介质中波散射的数值模拟在雷达和声纳、医学成像、生物物理学以及许多其他科学应用中具有重要的应用。在许多感兴趣的情况下,这样的模拟可以通过求解变系数亥姆霍兹方程来执行。该方程的解是振荡的,并且使用常规方法计算它们的难度随着振荡的频率快速增长。最近,一位研究人员开发了一种新的变系数亥姆霍兹方程求解器,它具有极高的精度,并且随着频率的增加,运行时间比传统求解器慢得多。它们通过求解非线性Riccati方程来操作,该非线性Riccati方程由Helmholtz方程的解的矩阵来满足。目前,这些求解器仅适用于特殊情况。该项目旨在将其扩展到一般情况,以开发一种比现有技术快得多的变系数亥姆霍兹方程方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A quasilinear complexity algorithm for the numerical simulation of scattering from a two-dimensional radially symmetric potential
二维径向对称势散射数值模拟的拟线性复杂度算法
- DOI:10.1016/j.jcp.2020.109401
- 发表时间:2020
- 期刊:
- 影响因子:4.1
- 作者:Bremer, James
- 通讯作者:Bremer, James
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Bremer其他文献
On the adaptive Levin method
- DOI:
10.1007/s00211-024-01443-6 - 发表时间:
2024-10-25 - 期刊:
- 影响因子:2.200
- 作者:
Shukui Chen;Kirill Serkh;James Bremer - 通讯作者:
James Bremer
On the numerical evaluation of the prolate spheroidal wave functions of order zero
- DOI:
10.1016/j.acha.2022.02.002 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
James Bremer - 通讯作者:
James Bremer
An math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mi mathvariant="script"O/mimrowmo stretchy="true"(/momn1/mnmo stretchy="true")/mo/mrow/math algorithm for the numerical evaluation of the Sturm-Liouville eigenvalues of the spheroidal wave functions of order zero
- DOI:
10.1016/j.acha.2022.02.001 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:3.200
- 作者:
Rafeh Rehan;James Bremer - 通讯作者:
James Bremer
A frequency-independent solver for systems of linear ordinary differential equations
线性常微分方程组的与频率无关的求解器
- DOI:
10.1016/j.cam.2025.116696 - 发表时间:
2025-12-15 - 期刊:
- 影响因子:2.600
- 作者:
Tony Hu;James Bremer - 通讯作者:
James Bremer
An <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"><mi mathvariant="script">O</mi><mrow><mo stretchy="true">(</mo><mn>1</mn><mo stretchy="true">)</mo></mrow></math> algorithm for the numerical evaluation of the Sturm-Liouville eigenvalues of the spheroidal wave functions of order zero
- DOI:
10.1016/j.acha.2022.02.001 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Rafeh Rehan;James Bremer - 通讯作者:
James Bremer
James Bremer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Bremer', 18)}}的其他基金
Efficient and highly accurate solvers for integral equations on surfaces with edges and corners
用于有棱角表面积分方程的高效且高精度求解器
- 批准号:
1418723 - 财政年份:2014
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Continuing Grant