Quantum Computational Signal Classification
量子计算信号分类
基本信息
- 批准号:2012609
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Developments in artificial intelligence are opening up new avenues for human-machine teaming. For example, the brain-computer interface (BCI) technology extracts and interprets information generated by brain activity without depending on any external device or muscle intervention. Improving human-machine interactions requires the analysis and interpretation of physiological signals to effectively assess individual states. These signals are typically nonstationary, noisy, and nonlinear, and current signal processing methods may fail. Embedding a signal into a point cloud, this project, Quantum Computational Signal Classifications (QuATOMIC) abides by the stringent nature of signals, and considers the detection of shape patterns of the signals’ point clouds. These shape patterns are characterized by their pertinent topological properties, which are summarized in a persistence diagram. A persistence diagram consists of two dimensional points whose positioning highlights signals’ features and deconvolves them from any underlying noise. On the other hand, point clouds consist of many discrete points, and the computation of these diagrams is a rather formidable task. Indeed, subsampling typically takes place leading to loss of vital information. The PIs will adopt a quantum topological framework which considers all points in a point cloud, and relies on principles of quantum machine learning algorithms. Moreover, when it comes to actual analysis of signals and their associated diagrams, one may need (i) to compute a distance between them so that they are differentiated, or (ii) to quantify their uncertainty and estimate a probability density function on the space of persistence diagrams. Computing a distance between two persistence diagrams requires the solution of an optimal matching problem. The PIs will develop a novel distance that is formulated and computed in a quantum way. Propagating a distribution of a persistence diagram to quantify uncertainty requires to compute a distribution of a random point process. This is a non-trivial, highly combinatorial problem, which QuATOMIC will bypass by considering a quantum computing approach based on either quantum circuits (gate model), or the principles of quantum annealing. Having at hand a measure of quantifying the difference among persistence diagrams and their uncertainty, QuATOMIC will further generate a novel quantum supervised machine learning scheme for signals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能的发展为人机合作开辟了新的途径。例如,脑机接口(BCI)技术提取和解释大脑活动产生的信息,而不依赖于任何外部设备或肌肉干预。改善人机交互需要分析和解释生理信号,以有效地评估个体状态。这些信号通常是非平稳的、有噪声的和非线性的,并且当前的信号处理方法可能失败。将信号嵌入点云,这个项目,量子计算信号分类(QuATOMIC)遵循信号的严格性质,并考虑检测信号点云的形状模式。这些形状模式的特征在于它们的相关拓扑属性,这些属性在持久性图中进行了总结。持久性图由二维点组成,其定位突出了信号的特征,并将其与任何潜在的噪声去卷积。另一方面,点云由许多离散点组成,这些图的计算是一项相当艰巨的任务。实际上,二次采样通常会导致重要信息的丢失。 PI将采用量子拓扑框架,该框架考虑点云中的所有点,并依赖于量子机器学习算法的原理。此外,当涉及到信号及其相关图表的实际分析时,可能需要(i)计算它们之间的距离,以便区分它们,或者(ii)量化它们的不确定性并估计持久性图表空间上的概率密度函数。计算两个持久性关系图之间的距离需要解决一个最佳匹配问题。PI将开发一种以量子方式制定和计算的新距离。描述持久性图的分布以量化不确定性需要计算随机点过程的分布。这是一个非平凡的,高度组合的问题,QuATOMIC将通过考虑基于量子电路(门模型)或量子退火原理的量子计算方法来绕过这个问题。QuATOMIC拥有量化持久性图之间的差异及其不确定性的措施,将进一步为信号生成一种新的量子监督机器学习方案。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A random persistence diagram generator
- DOI:10.1007/s11222-022-10141-y
- 发表时间:2021-04
- 期刊:
- 影响因子:2.2
- 作者:T. Papamarkou;Farzana Nasrin;A. Lawson;Na Gong;Orlando Rios;V. Maroulas
- 通讯作者:T. Papamarkou;Farzana Nasrin;A. Lawson;Na Gong;Orlando Rios;V. Maroulas
Topological Convolutional Layers for Deep Learning
深度学习的拓扑卷积层
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:6
- 作者:Love, E;Filippenko, B;Maroulas, V;Carlsson, G
- 通讯作者:Carlsson, G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vasileios Maroulas其他文献
Polymer graph neural networks for multitask property learning
用于多任务属性学习的聚合物图神经网络
- DOI:
10.1038/s41524-023-01034-3 - 发表时间:
2023-05-30 - 期刊:
- 影响因子:11.900
- 作者:
Owen Queen;Gavin A. McCarver;Saitheeraj Thatigotla;Brendan P. Abolins;Cameron L. Brown;Vasileios Maroulas;Konstantinos D. Vogiatzis - 通讯作者:
Konstantinos D. Vogiatzis
Identifying spatiotemporal patterns in opioid vulnerability: investigating the links between disability, prescription opioids and opioid-related mortality
- DOI:
10.1186/s12889-025-23044-0 - 发表时间:
2025-05-13 - 期刊:
- 影响因子:3.600
- 作者:
Andrew Deas;Adam Spannaus;Hashan Fernando;Heidi A. Hanson;Anuj J. Kapadia;Jodie Trafton;Vasileios Maroulas - 通讯作者:
Vasileios Maroulas
Statistical inference for the intensity in a partially observed jump diffusion
部分观察到的跳跃扩散强度的统计推断
- DOI:
10.1016/j.jmaa.2018.10.026 - 发表时间:
2019-04 - 期刊:
- 影响因子:1.3
- 作者:
Vasileios Maroulas;Xiaoyang Pan;Jie Xiong - 通讯作者:
Jie Xiong
Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise
Lévy 噪声驱动的非线性动力系统最优滤波器的大偏差
- DOI:
10.1016/j.spa.2019.02.009 - 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Vasileios Maroulas;Xiaoyang Pan;Jie Xiong - 通讯作者:
Jie Xiong
DialectDecoder: Human/machine teaming for bird song classification and anomaly detection
DialectDecoder:人机协作进行鸟鸣分类和异常检测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.1
- 作者:
Brittany Story;Patrick Gillespie;Graham Derryberry;Elizabeth Derryberry;Nina Fefferman;Vasileios Maroulas - 通讯作者:
Vasileios Maroulas
Vasileios Maroulas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vasileios Maroulas', 18)}}的其他基金
Online Spatiotemporal Filtering and Bayesian Topology for Tracking in Dynamically Designed Sensor Networks
用于动态设计传感器网络中跟踪的在线时空过滤和贝叶斯拓扑
- 批准号:
1821241 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
The 2017 John Barrett Memorial Lectures -- Mathematical Foundations of Data Science
2017年John Barrett纪念讲座——数据科学的数学基础
- 批准号:
1700494 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
The 2015 John Barrett Memorial Lectures
2015 年约翰·巴雷特纪念讲座
- 批准号:
1534641 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Signal Processing Methods for Computational Displays
计算显示的信号处理方法
- 批准号:
RGPIN-2017-06919 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Signal Processing Methods for Computational Displays
计算显示的信号处理方法
- 批准号:
RGPIN-2017-06919 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Signal Processing Methods for Computational Displays
计算显示的信号处理方法
- 批准号:
RGPIN-2017-06919 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual