Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
基本信息
- 批准号:RGPIN-2018-06806
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop intelligent systems and computational models for the analysis and support of small group interaction and team collaboration in multiple modalitiesSocial Signal Recognition ModelsThe task in this part of the project is to take utterances or sentences from a group discussion, extract verbal and nonverbal features from them, and automatically recognize social signals using machine learning models. These social signals are observable behaviours that relate to group decision-making, such as expression of positive and negative sentiment, proposals, agreement, decisions, questions, and floor-holding. The features we utilize for machine learning will primarily relate to vocal behaviour, including the linguistic content of utterances, and nonverbal features such as prosody, laughter, and pauses. We will investigate the usefulness of these language features in conjunction with multi-layer neural networks. Since such deep learning models typically require a large amount of training data to be most effective, and the amount of available group interaction data is limited, we will look at domain adaptation from related domains such as email, social media, and instant messaging. We will develop information visualization techniques for explaining deep learning predictions.Group Prediction Models / Complex Adaptive SystemsThis project component involves making temporal predictions about group phenomena, such as overall group performance, group productivity, member satisfaction, group cohesion, emergent leadership, and overall dominance levels. We will use social network analysis (SNA) algorithms for modelling how social structure evolves during the decision-making task. We will use agent-based modelling (ABM) to simulate how individuals with particular conversational strategies can lead to complex group behaviour. Both SNA and ABM are particularly useful computational tools for treating small groups as complex adaptive systems. In such systems, individual agents adapt to each other and influence each other, leading to complex group behaviour that can include self-organization, emergent leadership, abrupt phase transitions, and sensitivity to initial conditions. Retrodiction Models / Hidden InteractionsIn this project component, we will investigate methods for analyzing group interaction and dynamics in situations where direct observation of the group is limited. In those cases, we may want to use the limited data to predict what must have occurred in the past in order to bring the group to that state, requiring retrodictive models. For example, we may have artifacts from a meeting, such as participant notes, emails, and presentation slides, and want to predict how active different members had been in the meeting, or what their expressed sentiment was. The project will also include collection and annotation of group interaction data.
这个项目的目标是开发智能系统和计算模型,用于分析和支持多模式的小组互动和团队协作。社会信号识别模型项目这一部分的任务是从小组讨论中提取话语或句子,从中提取语言和非语言特征,并使用机器学习模型自动识别社会信号。这些社会信号是与群体决策相关的可观察行为,如积极和消极情绪的表达、建议、同意、决定、问题和发言。我们用于机器学习的特征将主要与发声行为有关,包括话语的语言内容,以及韵律、笑声和停顿等非语言特征。我们将研究这些语言特征与多层神经网络的有用性。由于这种深度学习模型通常需要大量的训练数据才能最有效,而可用的组交互数据量是有限的,因此我们将从相关领域(如电子邮件、社交媒体和即时消息)来看域适应。我们将开发用于解释深度学习预测的信息可视化技术。群体预测模型/复杂适应系统该项目组件涉及对群体现象进行时间预测,例如整体群体表现、群体生产力、成员满意度、群体凝聚力、紧急领导和总体支配水平。我们将使用社会网络分析(SNA)算法来模拟社会结构在决策任务中的演变。我们将使用基于代理的建模(ABM)来模拟具有特定会话策略的个体如何导致复杂的群体行为。SNA和ABM都是特别有用的计算工具,可以将小团体视为复杂的自适应系统。在这样的系统中,个体主体相互适应并相互影响,导致复杂的群体行为,包括自组织、紧急领导、突然相变和对初始条件的敏感性。回溯模型/隐藏交互在这个项目的组成部分中,我们将研究在对群体的直接观察有限的情况下分析群体交互和动态的方法。在这些情况下,我们可能希望使用有限的数据来预测过去必须发生的事情,以便将组带到那个状态,这需要回溯模型。例如,我们可能有来自会议的工件,例如与会者的笔记、电子邮件和演示幻灯片,并且希望预测不同成员在会议中的活跃程度,或者他们表达的情绪。该项目还将包括群体交互数据的收集和注释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murray, Gabriel其他文献
Polymer-filled honeycombs to achieve a structural material with appreciable damping
- DOI:
10.1177/1045389x12439636 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:2.7
- 作者:
Murray, Gabriel;Gandhi, Farhan;Hayden, Eric - 通讯作者:
Hayden, Eric
Murray, Gabriel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murray, Gabriel', 18)}}的其他基金
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Statistical Signal Processing of Social Networks with Behavioral Economics Constraints
CIF:小:具有行为经济学约束的社交网络的统计信号处理
- 批准号:
2112457 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Advanced Signal Processing for Mobile Social Media Sharing
用于移动社交媒体共享的高级信号处理
- 批准号:
RGPIN-2015-06522 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
RGPIN-2018-06806 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Social Signal Processing and Computational Modelling for Small Groups
小组的社交信号处理和计算模型
- 批准号:
527964-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
University Undergraduate Student Research Awards
(DEEP) Deep Emotion Processing for Social Agents Combining Social Signal Interpretation
and Computationally Modeling User Emotions
(DEEP) 结合社交信号解释和用户情绪计算建模的社交代理深度情绪处理
- 批准号:
392401413 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Research Grants
Advanced Signal Processing for Mobile Social Media Sharing
用于移动社交媒体共享的高级信号处理
- 批准号:
RGPIN-2015-06522 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Advanced Signal Processing for Mobile Social Media Sharing
用于移动社交媒体共享的高级信号处理
- 批准号:
478109-2015 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Accelerator Supplements