Collaborative Research: Nonoscillatory Phase Methods for the Variable Coefficient Helmholtz Equation in the High-Frequency Regime
合作研究:高频域下变系数亥姆霍兹方程的非振荡相法
基本信息
- 批准号:2012606
- 负责人:
- 金额:$ 11.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The importance of the numerical simulation of physical phenomena by computers cannot be overstated. Such computations have become essential tools both in scientific research and in industrial research and development. This project concerns the numerical simulation of the scattering of waves. Such simulations have applications to sonar and radar, as well as in medical imaging, geophysics, and many other applications. Wave phenomena become more complicated to model as the frequency of the wave increases, and our current ability to accurately model high-frequency waves is quite limited. This project seeks to develop new methods for modeling high-frequency waves efficiently and to high accuracy. The project provides research training opportunities for graduate students. The numerical simulation of the scattering of waves from inhomogeneous media has important applications in radar and sonar, medical imaging, geophysics, and a host of other scientific applications. In many cases of interest, such simulations can be performed by solving the variable coefficient Helmholtz equation. The solutions of this equation are oscillatory, and the difficulty of calculating them using conventional approaches grows quickly with the frequency of the oscillations. Recently, one of the investigators developed a new class of solvers for the variable coefficient Helmholtz equation that achieve extremely high accuracy and have run times that scale much more slowly with increasing frequency than conventional solvers. They operate by solving the nonlinear Riccati equation that is satisfied by the logarithms of solutions of the Helmholtz equation. Currently, these solvers only apply in special cases. This project aims to extend them to the general case to develop a method for the variable coefficient Helmholtz equation that is significantly faster than current techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用计算机对物理现象进行数值模拟的重要性怎么强调也不过分。这种计算已经成为科学研究和工业研究与发展的重要工具。本课题是关于波浪散射的数值模拟。这种模拟可以应用于声纳和雷达,以及医学成像,生物物理学和许多其他应用。随着波浪频率的增加,波浪现象的建模变得更加复杂,而我们目前精确建模高频波浪的能力非常有限。本项目旨在开发新的方法,以有效地模拟高频波和高精度。该项目为研究生提供研究培训机会。非均匀介质中波散射的数值模拟在雷达和声纳、医学成像、生物物理学以及许多其他科学应用中具有重要的应用。在许多感兴趣的情况下,这样的模拟可以通过求解变系数亥姆霍兹方程来执行。该方程的解是振荡的,并且使用常规方法计算它们的难度随着振荡的频率快速增长。最近,一位研究人员开发了一种新的变系数亥姆霍兹方程求解器,它具有极高的精度,并且随着频率的增加,运行时间比传统求解器慢得多。它们通过求解非线性Riccati方程来操作,该非线性Riccati方程由Helmholtz方程的解的矩阵来满足。目前,这些求解器仅适用于特殊情况。该项目旨在将其扩展到一般情况,以开发一种比现有技术快得多的变系数亥姆霍兹方程方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An accelerated, high-order accurate direct solver for the Lippmann–Schwinger equation for acoustic scattering in the plane
用于平面声散射的 Lippmann Schwinger 方程的加速、高阶精确直接求解器
- DOI:10.1007/s10444-022-09963-1
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Gopal, Abinand;Martinsson, Per-Gunnar
- 通讯作者:Martinsson, Per-Gunnar
Simpler is better: a comparative study of randomized pivoting algorithms for CUR and interpolative decompositions
- DOI:10.1007/s10444-023-10061-z
- 发表时间:2021-04
- 期刊:
- 影响因子:1.7
- 作者:Yijun Dong;P. Martinsson
- 通讯作者:Yijun Dong;P. Martinsson
Corrected trapezoidal rules for boundary integral equations in three dimensions
三维边界积分方程的修正梯形规则
- DOI:10.1007/s00211-021-01244-1
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:Wu, Bowei;Martinsson, Per-Gunnar
- 通讯作者:Martinsson, Per-Gunnar
HPS Accelerated Spectral Solvers for Time Dependent Problems: Part II, Numerical Experiments
用于解决瞬态问题的 HPS 加速谱求解器:第二部分,数值实验
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Babb, T. and
- 通讯作者:Babb, T. and
HPS Accelerated Spectral Solvers for Time Dependent Problems: Part I, Algorithms
- DOI:10.1007/978-3-030-39647-3_9
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:T. Babb;P. Martinsson;Daniel Appelö
- 通讯作者:T. Babb;P. Martinsson;Daniel Appelö
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Per-Gunnar Martinsson其他文献
SlabLU: a two-level sparse direct solver for elliptic PDEs
- DOI:
10.1007/s10444-024-10176-x - 发表时间:
2024-08-09 - 期刊:
- 影响因子:2.100
- 作者:
Anna Yesypenko;Per-Gunnar Martinsson - 通讯作者:
Per-Gunnar Martinsson
Mechanics of Materials with Periodic Truss or Frame Micro-Structures
- DOI:
10.1007/s00205-006-0044-2 - 发表时间:
2007-05-12 - 期刊:
- 影响因子:2.400
- 作者:
Per-Gunnar Martinsson;Ivo Babuška - 通讯作者:
Ivo Babuška
A simplified fast multipole method based on strong recursive skeletonization
一种基于强递归骨架化的简化快速多极子方法
- DOI:
10.1016/j.jcp.2024.113707 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:3.800
- 作者:
Anna Yesypenko;Chao Chen;Per-Gunnar Martinsson - 通讯作者:
Per-Gunnar Martinsson
Per-Gunnar Martinsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Per-Gunnar Martinsson', 18)}}的其他基金
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
2313434 - 财政年份:2023
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Randomized Algorithms for Solving Linear Systems
FRG:协作研究:求解线性系统的随机算法
- 批准号:
1952735 - 财政年份:2020
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
Randomized Algorithms for Matrix Computations
矩阵计算的随机算法
- 批准号:
1929568 - 财政年份:2018
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
Randomized Algorithms for Matrix Computations
矩阵计算的随机算法
- 批准号:
1620472 - 财政年份:2016
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
Collaborative Research: Scalable and accurate direct solvers for integral equations on surfaces
协作研究:可扩展且精确的曲面积分方程直接求解器
- 批准号:
1320652 - 财政年份:2013
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
CAREER: Fast Direct Solvers for Differential and Integral Equations
职业:微分方程和积分方程的快速直接求解器
- 批准号:
0748488 - 财政年份:2008
- 资助金额:
$ 11.19万 - 项目类别:
Continuing Grant
Fast Direct Solvers for Boundary Integral Equations
边界积分方程的快速直接求解器
- 批准号:
0610097 - 财政年份:2006
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 11.19万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 11.19万 - 项目类别:
Training Grant