Collaborative Research: Next-Generation Cutting Planes: Compression, Automation, Diversity, and Computer-Assisted Mathematics
合作研究:下一代切割面:压缩、自动化、多样性和计算机辅助数学
基本信息
- 批准号:2012764
- 负责人:
- 金额:$ 18.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mixed-integer optimization is a powerful mathematical decision-making technology related to operations research, data sciences, and artificial intelligence. This project considers applications in which high-stake decisions need to be made quickly and account for unknown future event or risk. In such applications, simulation methods and machine learning cannot give sufficient confidence for protecting against the possibility of catastrophic failures. Instead, one requires multi-parametric optimization to precompute responses, certify their safety, and guarantee the level of performance. In this direction, the investigators will study a key component of optimization algorithms called general purpose cutting planes in a novel multi-parametric setting suitable for process control in chemical engineering and optimizing compilers for high-performance computing platforms, aiming for major theoretical and computational advances that will generalize to many important applications. Broader impacts include the training of undergraduate and graduate students in computational mathematics and research skills, as well as development of high-quality open-source research software, and of further connections between several research communities within mathematics, computer science, and engineering.Mixed-integer (linear and nonlinear) optimization is concerned with finite-dimensional, non-convex optimization problems that include discrete decision variables such as those that model "yes/no" decisions. Systems of this type arise in all areas of industry and the sciences. Algorithms for mixed-integer optimization build upon convex optimization technology by relaxation, approximation, convexification, and decomposition techniques. Increases in system size in the presence of Big Data technologies creates new challenges that need to be addressed by a next generation of algorithms. This project studies convexification, specifically, cutting planes in multi-row and multi-cut cutting plane systems that are effective and efficient from the aspects of compression, automation, and diversity. In particular, spaces of extreme continuous piecewise linear cut-generating functions with prescribed features will be computed; these consist of semi-algebraic cells, parametrizing sub-additive piecewise linear functions, glued at their boundaries. The computation of each cell requires the proof of a theorem, and automated theorem proving technology, based on metaprogramming and semi-algebraic computations, will be developed. The investigators will apply the new cutting plane techniques to two target applications for which guaranteed correctness and performance is mission-critical: model predictive control in chemical process engineering and optimizing compilers for high-performance computing platforms. The multi-parametric optimization problems in both applications will benefit from the parametric nature of the new cutting planes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
混合整数优化是一种与运筹学、数据科学和人工智能相关的强大数学决策技术。该项目考虑了需要快速做出高风险决策并考虑未知未来事件或风险的应用程序。在这些应用中,仿真方法和机器学习无法提供足够的信心来防止灾难性故障的可能性。相反,需要多参数优化来预先计算响应,证明其安全性并保证性能水平。在这个方向上,研究人员将研究优化算法的一个关键组成部分,称为通用切割平面,适用于化学工程过程控制的新型多参数设置,并优化高性能计算平台的编译器,旨在实现将推广到许多重要应用的重大理论和计算进展。更广泛的影响包括在计算数学和研究技能方面对本科生和研究生进行培训,以及开发高质量的开源研究软件,并在数学,计算机科学和工程领域的多个研究社区之间建立进一步的联系。(线性和非线性)优化涉及有限维,非凸优化问题,包括离散的决策变量,如那些模型“是/否”的决定。这种类型的系统出现在工业和科学的所有领域。混合整数优化算法通过松弛、近似、凸化和分解技术建立在凸优化技术之上。在大数据技术的存在下,系统规模的增加带来了新的挑战,需要下一代算法来解决。本项目研究凸化,具体而言,从压缩、自动化和多样性方面有效和高效的多行和多切割切割平面系统中的切割平面。特别是,空间的极端连续分段线性切割生成函数与规定的功能将被计算;这些包括半代数细胞,参数化次添加分段线性函数,粘在它们的边界。每个单元的计算需要证明一个定理,将开发基于元编程和半代数计算的自动定理证明技术。研究人员将新的切割平面技术应用于两个目标应用程序,其中保证正确性和性能是关键任务:化学过程工程中的模型预测控制和高性能计算平台的优化编译器。这两个应用程序中的多参数优化问题将受益于新切割平面的参数化特性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. VII. Inverse Semigroup Theory, Closures, Decomposition of Perturbations
Gomory 和 Johnson 的无限群问题中的等变扰动。
- DOI:10.5802/ojmo.16
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hildebrand, Robert;Köppe, Matthias;Zhou, Yuan
- 通讯作者:Zhou, Yuan
Facets, weak facets, and extreme functions of the Gomory–Johnson infinite group problem
Gomory-Johnson 无限群问题的面、弱面和极限函数
- DOI:10.1007/s10107-020-01477-2
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Köppe, Matthias;Zhou, Yuan
- 通讯作者:Zhou, Yuan
Dual-feasible functions for integer programming and combinatorial optimization: Algorithms, characterizations, and approximations
用于整数规划和组合优化的双重可行函数:算法、表征和近似
- DOI:10.1016/j.dam.2019.11.021
- 发表时间:2019
- 期刊:
- 影响因子:1.1
- 作者:Köppe, Matthias;Wang, Jiawei
- 通讯作者:Wang, Jiawei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Koeppe其他文献
Matthias Koeppe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Koeppe', 18)}}的其他基金
Infinite-dimensional relaxations of mixed-integer optimization problems
混合整数优化问题的无限维松弛
- 批准号:
1320051 - 财政年份:2013
- 资助金额:
$ 18.02万 - 项目类别:
Continuing Grant
High-performance computations with rational generating functions
使用有理生成函数进行高性能计算
- 批准号:
0914873 - 财政年份:2009
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325312 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329758 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
- 批准号:
2308306 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant