Neutrino Physics at Syracuse University
雪城大学中微子物理学
基本信息
- 批准号:2012983
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the major intellectual achievements of the 20th century was the development of the Standard Model (SM) of particle physics. This model succeeded in classifying all of the elementary particles known at the time into a hierarchy of groups having similar quantum properties. The validity of this model to date was confirmed by the discovery of the Higgs boson at the Large Hadron Collider at CERN. However, the Standard Model as it currently exists leaves open many questions about the universe, including such fundamental questions as to why the Higgs mass has the value it has and why there is no antimatter in the universe. One of the primary areas to search for answers to these and other open questions about the universe, how it came to be and why it is the way it is, is to focus on a study of the properties of neutrinos and to use what we know and can learn about neutrinos as probes of science beyond the Standard Model. Neutrinos are those elementary particles that interact with practically nothing else in the universe. They have no electric charge and were once thought to be massless. We now know there are three kinds of neutrinos that are distinguishable through the different interactions that they undergo whenever there is an interaction. We also know that neutrinos do have a mass and because they do, they can actually change from one type to another. Detailed measurements of these changes, along with other current neutrino experiments, form one of the most promising ways to probe for new physics beyond the Standard Model. Such measurements lie at the heart of this project which include activities of the Syracuse University neutrino group on the MicroBooNE, NOvA, SBND, and DUNE experiments. These activities include measurements with NOvA’s test beam that will impact the experiment’s ability to resolve the neutrino mass hierarchy; on the MicroBooNE experiment, analyses of low-energy activity that has relevance for supernova physics and basic neutrino interaction studies, and on the DUNE experiment the group will make significant contributions to the construction of the anode plane assemblies needed to realize this enormous detector. There is currently a large interest in experimental particle physics in Liquid Argon Time Projection Chambers (LArTPC) spurred in part by the proposed DUNE project at Fermi National Accelerator Laboratory (FNAL) and in neutrino physics in general. This award supports work that refines LArTPC technology, using a test beam and at the MicroBooNE experiment at FNAL. LArTPC detector technology is scalable to the very large masses (perhaps 10 kiloTons) needed by next generation neutrino experiments and is capable of recording three-dimensional digital images of particle trajectories. MicroBooNE is making a variety of interesting physics measurements, as well as serving as a proving ground for new hardware techniques relevant for future experiments. Another aspect of the work in this award is the analysis of data from a large LArTPC detector at CERN called ProtoDUNE. The lessons learned here will inform the future DUNE detector design. The broader impact of this work will involve undergraduates, graduate students, and postdoctoral researchers, all of whom will receive valuable experience and training in experimental research that will be applicable in their future career trajectories. The Syracuse group will continue with several outreach efforts as part of this award. The public will be informed about the exciting research in particle physics via the hosting of in-person Masterclass activities. Finally, the group will take advantage of Syracuse University’s unique commitment to the education of veterans of the U.S. armed services and engage this population of students in the DUNE hardware efforts on campus, providing valuable technical and scientific training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
世纪的主要学术成就之一是粒子物理学标准模型(SM)的发展。该模型成功地将当时已知的所有基本粒子分类为具有相似量子特性的组的层次结构。到目前为止,这个模型的有效性被欧洲核子研究中心大型强子对撞机上发现的希格斯玻色子所证实。然而,目前存在的标准模型留下了许多关于宇宙的问题,包括为什么希格斯质量具有它的价值以及为什么宇宙中没有反物质等基本问题。对于这些和其他关于宇宙的开放性问题,宇宙是如何形成的,为什么会是这样,寻找答案的主要领域之一是专注于中微子性质的研究,并利用我们所知道的和可以了解的关于中微子的知识作为标准模型之外的科学探针。中微子是那些基本粒子,在宇宙中几乎不与其他任何东西相互作用。它们不带电荷,曾经被认为是无质量的。我们现在知道,有三种中微子,它们可以通过不同的相互作用来区分,只要有相互作用,它们就会发生。我们还知道中微子确实有质量,因为它们有质量,它们实际上可以从一种类型变成另一种类型。对这些变化的详细测量,沿着目前的其他中微子实验,构成了探索标准模型之外的新物理学的最有前途的方法之一。这种测量是这个项目的核心,其中包括锡拉丘兹大学中微子小组在MicroBooNE、NOvA、SBND和DUNE实验中的活动。这些活动包括NOvA的测试束的测量,这将影响实验解决中微子质量等级的能力;在MicroBooNE实验中,分析与超新星物理学和基本中微子相互作用研究相关的低能活动,在DUNE实验中,该小组将为实现这个巨大的探测器所需的阳极平面组件的建造做出重大贡献。目前,在费米国家加速器实验室(FNAL)的DUNE项目的推动下,液体氩时间投影室(LArTPC)中的实验粒子物理学和中微子物理学受到了广泛的关注。该奖项支持在FNAL的MicroBooNE实验中使用测试光束改进LArTPC技术的工作。LArTPC探测器技术可扩展到下一代中微子实验所需的非常大的质量(也许10千吨),并且能够记录粒子轨迹的三维数字图像。MicroBooNE正在进行各种有趣的物理测量,并作为与未来实验相关的新硬件技术的试验场。该奖项工作的另一个方面是分析来自CERN称为Protodune的大型LArTPC探测器的数据。这里学到的经验教训将为未来的DUNE探测器设计提供信息。这项工作的更广泛的影响将涉及本科生,研究生和博士后研究人员,他们都将获得宝贵的经验和培训,在实验研究,将适用于他们未来的职业轨迹。作为该奖项的一部分,锡拉丘兹小组将继续开展几项外联工作。公众将通过举办现场大师班活动了解粒子物理学的令人兴奋的研究。最后,该组织将利用锡拉丘兹大学对美国退伍军人教育的独特承诺,并让这些学生参与校园内的DUNE硬件工作,提供有价值的技术和科学培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitchell Soderberg其他文献
Mitchell Soderberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitchell Soderberg', 18)}}的其他基金
Neutrino Research at Syracuse University
雪城大学的中微子研究
- 批准号:
2209488 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Neutrino Physics at Syracuse University
雪城大学中微子物理学
- 批准号:
1707790 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
MRI Consortium: Development of a Time Projection Chamber to Measure Neutrino Interactions in the LAr1 Near Detector
MRI 联盟:开发时间投影室来测量 LAr1 近探测器中的中微子相互作用
- 批准号:
1428753 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Neutrino Physics with Liquid Argon Detectors: Entering the MicroBooNE Era
液氩探测器的中微子物理:进入 MicroBooNE 时代
- 批准号:
1403280 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Neutrino Physics with Liquid Argon Detectors
中微子物理与液氩探测器
- 批准号:
1068553 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Studentship
Searching for New Physics with the CMS experiment at the LHC
通过 LHC 的 CMS 实验寻找新物理
- 批准号:
2908368 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
- 批准号:
EP/Y035038/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Astroparticle Physics with a Trapped Electron
俘获电子的天体粒子物理学
- 批准号:
EP/Y036263/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006484/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Manchester Nuclear Physics CG 2023
曼彻斯特核物理 CG 2023
- 批准号:
ST/Y000323/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant