Collaborative Research: Advancing Robust Control and State Estimation of Converter-Based Power Systems

合作研究:推进基于转换器的电力系统的鲁棒控制和状态估计

基本信息

  • 批准号:
    2013739
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Future power grids, the nation’s most critical infrastructure, will be extremely difficult to manage due to large-scale integration of renewable energy resources. The strategy proposed in this project is aided by new grid technologies (converter-based assets in wind/solar farms and high-frequency sensing devices) that are developed and deployed to allow new real-time control-theoretic algorithms to be implemented with little overhead---while guaranteeing grid stability and resilience. The literature in this area had addressed various scientific research questions, but mostly adopted simplified models that cannot adequately capture the real-time operation of future grids. This project addresses this science gap by developing a new set of real-time algorithms, leading to a more robust operation of future power grids characterized with high penetration of renewable energy resources. These control algorithms can be implemented by grid operators throughout the nation. The project will also include: a) hosting an outreach workshop on renewable energy systems for a low-income, minority-majority, and female-only high school in San Antonio; b) organizing a technical industry workshop that showcases the created algorithms in the state of Iowa; c) disseminating the created scientific methods within the curricula at the University of Texas at San Antonio and Iowa State University.This project aims at modernizing grid control methods which has traditionally relied on linear systems theory. In particular, the control-theoretic literature addressed a plethora of grid challenges with a focus on linearized, differential equation models whereby algebraic constraints (i.e., power flows) are eliminated. This is in contrast with the more realistic, complex nonlinear differential algebraic equation (NDAE) models. Linearizing grid models around operating points and eliminating algebraic constraints have proven to be a reliable strategy---a trade-off between complexity and tractability. Yet as grids are increasingly pushed to their limits via intermittent renewables, their physical states risk escaping operating regions due to a poor prediction of wind or solar. In lieu of linear differential equation models, control of NDAEs is highly beneficial for grids that are characterized by highly uncertain renewables. This guarantees grid stability for larger operating conditions. Given the limitations of present power system models and the lack of theoretical foundations for control and dynamic state estimation of grid NDAEs, this project will: 1) create a physically representative NDAE model of a power system with a mix of conventional machines and a variety of converter-based technologies; 2) investigate a general theory of dynamic state estimation and robust feedback control algorithms that consider the uncertain nature of power grids modeled via higher-order NDAEs; 3) obtain computationally tractable routines that can be implemented in control centers of power grids. The created theoretical foundations have applications in wide area control, converter-based control, centralized and decentralized and robust dynamic state estimation. This research is critical to guarantee acceptable performance of modern and future power systems and will lead to advancing the state-of-the-art of grid control studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的电网是国家最关键的基础设施,由于可再生能源资源的大规模整合,管理起来将非常困难。该项目中提出的策略得到了新电网技术(风能/太阳能发电场和高频传感设备中基于转换器的资产)的帮助,这些技术的开发和部署允许以很少的开销实现新的实时控制理论算法,同时保证电网的稳定性和弹性。该领域的文献已经解决了各种科学研究问题,但大多采用简化模型,无法充分捕捉未来网格的实时操作。该项目通过开发一套新的实时算法来解决这一科学差距,从而使未来电网的运行更加稳健,其特点是可再生能源的高度渗透。这些控制算法可以由全国各地的电网运营商实施。该项目还将包括:a)为圣安东尼奥的一所低收入、少数民族占多数、女性占多数的高中举办一个关于可再生能源系统的外联讲习班; B)组织一个技术行业讲习班,展示爱荷华州创建的算法; c)、在德克萨斯大学圣安东尼奥分校和爱荷华州州立大学的课程中传播所创造的科学方法。该项目旨在使电网控制方法现代化,传统上依赖于线性系统理论。特别地,控制理论文献解决了过多的网格挑战,重点是线性化的微分方程模型,其中代数约束(即,功率流)被消除。这与更现实的、复杂的非线性微分代数方程(NDAE)模型形成对比。围绕工作点线性化网格模型并消除代数约束已被证明是一种可靠的策略-在复杂性和易处理性之间进行权衡。然而,随着电网越来越多地通过间歇性可再生能源被推到极限,由于对风能或太阳能的预测不佳,它们的物理状态有可能逃离运行区域。代替线性微分方程模型,NDAE的控制对于以高度不确定的可再生能源为特征的电网非常有益。这保证了电网在较大运行条件下的稳定性。鉴于目前电力系统模型的局限性和缺乏电网NDAE控制和动态状态估计的理论基础,本项目将:1)建立一个具有物理代表性的电力系统NDAE模型,该模型混合了传统机器和各种基于变流器的技术; 2)研究考虑电网不确定性的动态状态估计和鲁棒反馈控制算法的一般理论; 3)获得可在电网的控制中心中实现的计算上易处理的例程。所建立的理论基础在广域控制、基于变换器的控制、集中式和分散式以及鲁棒动态状态估计中具有应用。这项研究对于保证现代和未来电力系统的可接受性能至关重要,并将推动电网控制研究的最新发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transient Stability and Active Protection of Power Systems With Grid-Forming PV Power Plants
  • DOI:
    10.1109/tpwrs.2022.3165704
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Soummya Roy;H. V. Pico
  • 通讯作者:
    Soummya Roy;H. V. Pico
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hugo Villegas Pico其他文献

Hugo Villegas Pico的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hugo Villegas Pico', 18)}}的其他基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414608
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414605
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414604
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
  • 批准号:
    2314916
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了