Triggering Celltype Specific Behaviors with Rationally Designed Nanoenvironments
通过合理设计的纳米环境触发细胞类型的特定行为
基本信息
- 批准号:2014151
- 负责人:
- 金额:$ 62.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is triggering cell-type-specific behaviors with rationally designed nano-environments. Cell behavior critically depends on the cellular microenvironment, i.e. the physical and (bio)chemical properties of the material surrounding the cell. The PIs have demonstrated that nanostructures in the environment elicit a unique and universal response across cell types. The response to subcellular scale nano-environment can drive unique cell behaviors, including guidance over large distances, control with subcellular precision, and, when combined with other cell guidance cues, cell behavior that is controlled on multiple scales. The research will yield quantitative insights and predictive phase-field simulations that will be validated and improved in feedback between experiments and simulations. This feedback loop relies critically on controlled cellular experiments with advanced image analysis, cutting-edge 3D phase-field modeling, and machine learning to link experiments and simulations and forge a path towards predictive understanding of cell behavior in nano-environments. Precise control of cell behavior with nano-environments holds great promise for a broad range of biological and biomedical applications that require precise steering of the migration and behavior of cells and tissues. The research project will allow the PIs to develop guiding principles for the design of such nano-environments for specific tasks, which will enable these materials to be applied to a broad range of tasks that are beneficial to society through medical and other technologies. The PIs will train scientists in the use of the image-analysis and modeling software that will be developed, which will be freely available. This training will be offered in the form of week-long, intensive bootcamps. The PIs will also use the research to reach out to the general public. The results of the project will be broadly disseminated to the academic community through publications, conferences and workshops.Esotaxis, the guidance of cytoskeletal dynamics by nanotopography, is a phenomenon that was discovered only recently by the PIs. It is a highly conserved phenomenon in mammalian cells that opens up novel, cell-type-specific and spatially precise control opportunities, but it is not yet well understood. This project will lead to a predictive understanding of esotaxis and how it can be harnessed with rationally designed nano-environments. This understanding will be achieved through an iterative cycle involving materials design and fabrication, validation through cellular imaging and advanced analysis, and tuning and extension of the three dimensional phase field simulations. Machine learning approaches will allow the team to determine which cellular characteristics are the most important for determining esotactic phenotypes, as well as well as to correlate nano-topographic features with specific esotactic behaviors. Starting with initial results from 3D phase-field simulations that exhibit qualitative agreement with key experimental predictions, the team expects to develop a quantitatively predictive model that, as a second goal, will also incorporate realistic cytoskeletal dynamics, and enable simultaneous control of cell functions on multiple scales. The third goal is to demonstrate cell type specific control in a biologically relevant model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是通过合理设计的纳米环境触发细胞类型特异性行为。细胞行为关键取决于细胞微环境,即细胞周围物质的物理和(生物)化学性质。PI已经证明,环境中的纳米结构引起了跨细胞类型的独特和普遍的反应。对亚细胞尺度纳米环境的响应可以驱动独特的细胞行为,包括大距离的指导,亚细胞精确控制,以及当与其他细胞指导线索结合时,在多个尺度上控制的细胞行为。该研究将产生定量的见解和预测相场模拟,将在实验和模拟之间的反馈中进行验证和改进。这种反馈回路严重依赖于受控的细胞实验,包括先进的图像分析、尖端的3D相场建模和机器学习,以将实验和模拟联系起来,并为预测理解纳米环境中的细胞行为开辟道路。利用纳米环境精确控制细胞行为对于广泛的生物和生物医学应用具有巨大的希望,这些应用需要精确控制细胞和组织的迁移和行为。该研究项目将允许PI为特定任务设计这种纳米环境制定指导原则,这将使这些材料能够通过医疗和其他技术应用于对社会有益的广泛任务。PI将培训科学家使用将开发的图像分析和建模软件,这些软件将免费提供。这项培训将以为期一周的密集训练营的形式提供。PI还将利用研究来接触公众。该项目的成果将通过出版物、会议和讲习班广泛传播给学术界。Esotaxis是一种通过纳米形貌引导细胞骨架动力学的现象,是PI最近才发现的。它是哺乳动物细胞中高度保守的现象,开辟了新的,细胞类型特异性和空间精确控制的机会,但它还没有得到很好的理解。该项目将导致对esotaxis的预测性理解,以及如何利用合理设计的纳米环境。这种理解将通过涉及材料设计和制造的迭代循环,通过细胞成像和高级分析进行验证,以及调整和扩展三维相场模拟来实现。机器学习方法将使团队能够确定哪些细胞特征对于确定等规表型最重要,并将纳米地形特征与特定的等规行为关联起来。从3D相场模拟的初步结果开始,这些结果与关键的实验预测具有定性一致性,该团队希望开发一种定量预测模型,作为第二个目标,该模型还将结合现实的细胞骨架动力学,并能够在多个尺度上同时控制细胞功能。第三个目标是在生物相关模型中展示细胞类型特异性控制。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Excitable systems: A new perspective on the cellular impact of elongate mineral particles
- DOI:10.1016/j.envres.2023.115353
- 发表时间:2023-05-26
- 期刊:
- 影响因子:8.3
- 作者:Gu,Shuyao;Bull,Abby;Losert,Wolfgang
- 通讯作者:Losert,Wolfgang
Spontaneous polarization and cell guidance on asymmetric nanotopography
- DOI:10.1038/s42005-022-00889-0
- 发表时间:2022-05-11
- 期刊:
- 影响因子:5.5
- 作者:Herr, Corey;Winkler, Benjamin;Losert, Wolfgang
- 通讯作者:Losert, Wolfgang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Losert其他文献
Modeling actin polymerization wave patterns on mechanical ridges via dynamical networks
- DOI:
10.1016/j.bpj.2021.11.2128 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Parijat Banerjee;Qixin Yang;Peter N. Devreotes;Wolfgang Losert;Pablo A. Iglesias - 通讯作者:
Pablo A. Iglesias
Understanding mechanisms of topography sensing in migrating cells through simulations of a coupled excitable network model
- DOI:
10.1016/j.bpj.2022.11.2832 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Parijat Banerjee;Qixin Yang;Wolfgang Losert;Peter N. Devreotes;Pablo A. Iglesias - 通讯作者:
Pablo A. Iglesias
Cell Shape Dynamics: from Waves to Motion
- DOI:
10.1016/j.bpj.2010.12.3007 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Wolfgang Losert;Meghan Driscoll;Colin McCann;John Fourkas;Carole Parent - 通讯作者:
Carole Parent
Simulating regoliths in microgravity
模拟微重力下的风化层
- DOI:
10.1093/mnras/stt742 - 发表时间:
2013 - 期刊:
- 影响因子:4.8
- 作者:
Naomi Murdoch;Naomi Murdoch;Naomi Murdoch;B. Rozitis;Simon F. Green;Patrick Michel;T. D. Lophem;Wolfgang Losert - 通讯作者:
Wolfgang Losert
Elongate mineral particles (EMP) characteristics and mesothelioma: Summary and resolution for session I of the Monticello II conference
- DOI:
10.1016/j.envres.2022.114754 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:
- 作者:
Ann G. Wylie;Andrey A. Korchevskiy;Lucy Darnton;Eric J. Chatfield;Julian Peto;Drew R. Van Orden;Wolfgang Losert;David H. Garabrant - 通讯作者:
David H. Garabrant
Wolfgang Losert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Losert', 18)}}的其他基金
Collective Rotation Networks in Dense Granular Flow Experiments: Connecting Rotation and Translation Across Scales
密集颗粒流实验中的集体旋转网络:跨尺度连接旋转和平移
- 批准号:
1507964 - 财政年份:2015
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
Probing the Wave-Like Nature of Cell Migration and Collective Behavior
探究细胞迁移和集体行为的波状性质
- 批准号:
1205965 - 财政年份:2012
- 资助金额:
$ 62.87万 - 项目类别:
Continuing Grant
Interdisciplinary Summer School: Granular Flows-From Simulations to Astrophysical Applications; University of Maryland, College Park; June 13-17, 2011
跨学科暑期学校:颗粒流——从模拟到天体物理应用;
- 批准号:
1115639 - 财政年份:2011
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
Dynamic Contact Networks in Granular Systems: New Insights into Fracture &Segregation
颗粒系统中的动态接触网络:对断裂的新见解
- 批准号:
0907146 - 财政年份:2009
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
Integration of topographical, mechanical and biochemical signals in cell motility
细胞运动中地形、机械和生化信号的整合
- 批准号:
0750371 - 财政年份:2008
- 资助金额:
$ 62.87万 - 项目类别:
Continuing Grant
Collaborative Research: Visualizing the Aging Process in Granular Matter Using Experiment and Simulation
合作研究:利用实验和模拟可视化颗粒物质的老化过程
- 批准号:
0625890 - 财政年份:2006
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
International Conference on Chaos and Nonlinear Dynamics: Dynamics Days 2006; Hyatt Regency Bethesda, Maryland; January 4-7, 2006
混沌与非线性动力学国际会议:动力学日 2006;
- 批准号:
0600897 - 财政年份:2006
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
Collaborative research: Studies of aging and memory in granular materials
合作研究:颗粒材料的老化和记忆研究
- 批准号:
0457431 - 财政年份:2005
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
MRI: Acquisition of a Holographic Laser Tweezer Array for Submicron Control of Soft Materials and Novel Network Dynamics
MRI:获取全息激光镊子阵列,用于软材料的亚微米控制和新型网络动力学
- 批准号:
0320896 - 财政年份:2003
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
相似海外基金
Selective cell vulnerability to alpha-synuclein: investigating the underlying region- and celltype- specific factors
选择性细胞对 α-突触核蛋白的脆弱性:研究潜在的区域和细胞类型特异性因素
- 批准号:
2432506 - 财政年份:2021
- 资助金额:
$ 62.87万 - 项目类别:
Studentship
Vitamin D induces a dynamic and celltype-specific modulation of the 3D- chromatin structure
维生素 D 诱导 3D 染色质结构的动态和细胞类型特异性调节
- 批准号:
437173059 - 财政年份:2020
- 资助金额:
$ 62.87万 - 项目类别:
Research Grants