RUI: Investigating Spin Currents from Nuclear Field Gradients

RUI:研究核场梯度中的自旋流

基本信息

  • 批准号:
    2014786
  • 负责人:
  • 金额:
    $ 11.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2021-10-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYThis award supports research into spin and charge current generation relevant to future "spintronics" technologies, educating wider student populations about the quantum mechanics of spin, and outreach to local communities on issues pertaining to quantum science. Familiar electronics is based on a current of charges. Spintronics works, instead, on a current of magnetic spins, which one can think of as infinitesimal bar magnets. Efficiently generating and measuring spin currents is a condition for many proposed spin-based devices. The research effort will theoretically investigate a mechanism of spin-current generation and measurement that involves non-uniform magnetic fields coming from atomic nuclei embedded in a semiconductor. A further goal of this activity will be to compare figures of merit of this new mechanism to traditional spin-orbit coupling for spin-current generation and detection. Students will take part in all aspects of the project: learning and applying analytic and numerical methods, drafting articles, and presenting results at meetings. The principal investigator (PI) will develop course materials for an introductory class in the quantum mechanics of spin that will be geared toward a wide swath of students: those who have not taken traditional quantum mechanics or even many upper-level physics courses. The curriculum will be designed to be accessible to chemistry and engineering/computer science students in an effort to mainstream quantum mechanical and quantum computing concepts. Quantum technologies are expected to bring about a quantum revolution. The PI will engage the campus and local community in discussions (through public presentations) of quantum science, the directions quantum technology will lead, and the importance of quantum education for the nation.TECHNICAL SUMMARYThis award supports theoretical investigations of spin-current-to-charge-current and charge-current-to-spin-current conversion by means of gradients in nuclear field. The spin-Hall effect and its inverse effect are presently the chief methods by which spin/charge currents are converted. Spin-Hall conversions require materials with strong spin-orbit interactions, which shorten spin diffusion lengths. The research thrust here is to tap into alternative materials for charge/spin current conversion where strong spin-orbit interactions are not necessary or desirable; instead, strong hyperfine interactions are relied upon. Nuclear field or hyperfine gradients offer a mechanism by which either spin or charge current can be generated. Spin separation via this nuclear gradient channel is reminiscent of the Stern-Gerlach effect, but since the nuclear field is not a true magnetic field in the sense of a Lorentz force being operational, spins are able to separate more effectively than they would in a true magnetic field gradient (the nuclear field - at the level of the Fermi contact potential - acts only on the spin and not on the orbital degree of freedom). The project goal is to develop and solve spin and charge drift-diffusion equations with the gradient effect included. Analytic solutions are possible for some configurations but in general the coupled equations are nonlinear and necessitate numerical methods. Furthermore, two possible experimental realizations of the effect will be modeled: electrical spin injection and optical spin injection. In both situations, a nuclear gradient is feasible through non-uniform dynamic nuclear polarization by injected spin polarized carriers. By modeling and evaluating these scenarios, a guide will be provided to experimentalists who wish to observe the spin and charge separating effects. Ultimately, the spin/charge drift diffusion formalism developed will be able to incorporate other types of field gradients as well, namely, spin-orbit fields such as those due to the Rashba interaction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持与未来的“自旋电子学”技术相关的自旋和电荷电流的研究,教育更多的学生群体关于自旋的量子力学,并就与量子科学有关的问题与当地社区进行接触。人们熟悉的电子产品是基于电流的电荷。相反,自旋电子学工作在磁自旋的电流上,人们可以把它想象成无限小的条形磁铁。有效地产生和测量自旋电流是许多已提出的基于自旋的器件的条件。这项研究工作将从理论上研究自旋电流的产生和测量机制,该机制涉及来自嵌入在半导体中的原子核的非均匀磁场。这项活动的另一个目标是将这一新机制的优值系数与传统的自旋-轨道耦合进行比较,以产生和检测自旋-电流。学生将参与项目的所有方面:学习和应用分析和数值方法,起草文章,并在会议上展示结果。首席研究员(PI)将为自旋量子力学入门课程开发课程材料,该课程将面向广泛的学生:那些没有学习过传统量子力学甚至许多高级物理课程的学生。课程设计将面向化学和工程/计算机科学专业的学生,以努力将量子力学和量子计算的概念纳入主流。量子技术有望带来一场量子革命。PI将让校园和当地社区参与(通过公开演讲)量子科学、量子技术将引领的方向以及量子教育对国家的重要性的讨论。技术总结该奖项支持通过核场中的梯度进行自旋电流到电荷电流和电荷电流到自旋电流转换的理论研究。自旋霍尔效应及其逆效应是目前实现自旋/电荷电流转换的主要方法。自旋-霍尔转换需要具有强烈的自旋-轨道相互作用的材料,这会缩短自旋扩散长度。这里的研究重点是利用替代材料进行电荷/自旋电流转换,在这些材料中,不需要或不希望发生强烈的自旋-轨道相互作用;相反,依赖于强烈的超精细相互作用。核场或超精细梯度提供了一种可以产生自旋电流或电荷电流的机制。通过这种核梯度通道的自旋分离让人想起斯特恩-格拉赫效应,但由于核场不是洛伦兹力意义上的真正磁场,自旋能够比在真正磁场梯度下更有效地分离(在费米接触势水平上的核场只作用于自旋,而不是轨道自由度)。该项目的目标是建立和求解包含梯度效应的自旋和电荷漂移-扩散方程。对于某些构型,解析解是可能的,但一般而言,耦合方程是非线性的,需要使用数值方法。此外,该效应的两种可能的实验实现将被模拟:电自旋注入和光学自旋注入。在这两种情况下,通过注入自旋极化载流子的非均匀动态核极化,核梯度是可行的。通过模拟和评估这些场景,将为希望观察自旋和电荷分离效应的实验者提供指导。最终,开发的自旋/电荷漂移扩散公式也将能够包含其他类型的场梯度,即自旋-轨道场,例如由于Rashba相互作用而产生的场。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Harmon其他文献

Bayesian regional moment tensor from ocean bottom seismograms recorded in the Lesser Antilles: Implications for regional stress field
小安的列斯群岛记录的海底地震图的贝叶斯区域矩张量:对区域应力场的影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    M. Lindner;A. Rietbrock;L. Bie;S. Goes;J. Collier;C. Rychert;Nicholas Harmon;S. Hicks;T. Henstock
  • 通讯作者:
    T. Henstock
Earth and Planetary Science Letters Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone
地球与行星科学快报 利用小安的列斯群岛俯冲带的地震速度层析成像对板片输送的流体及其深度脱水进行成像
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Bie;S. Hicks;A. Rietbrock;S. Goes;J. Collier;C. Rychert;Nicholas Harmon;B. Maunder
  • 通讯作者:
    B. Maunder
Elastic Electron Scattering from Be, Mg, and Ca
Be、Mg 和 Ca 的弹性电子散射
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    M. Adibzadeh;C. Theodosiou;Nicholas Harmon
  • 通讯作者:
    Nicholas Harmon
Evolution of the Oceanic Lithosphere in the equatorial Atlantic, evidence for small-scale convection from the PI-LAB experiment
赤道大西洋海洋岩石圈的演化,来自 PI-LAB 实验的小规模对流证据
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Harmon;C. Rychert;J. Kendall;M. Agius;P. Bogiatzis;S. Tharimena
  • 通讯作者:
    S. Tharimena
(2020). Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature, 582(7813), 525-529.
(2020)。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Cooper;Colin G. Macpherson;Jon D. Blundy;B. Maunder;4. RobertW.;Allen;Saskia Goes;Jenny Collier;L. Bie;Nicholas Harmon;S. Hicks;Alexander A. Iveson;J. Prytulak;A. Rietbrock;C. Rychert
  • 通讯作者:
    C. Rychert

Nicholas Harmon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Harmon', 18)}}的其他基金

RUI: Investigating Spin Currents from Nuclear Field Gradients
RUI:研究核场梯度中的自旋流
  • 批准号:
    2152540
  • 财政年份:
    2021
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
How do subduction zones initiate, develop and end: Imaging the Reversal of Subduction in the Solomon Islands
俯冲带如何开始、发展和结束:想象所罗门群岛的俯冲反转
  • 批准号:
    NE/M00788X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant
Reduction of noise on broadband ocean-bottom seismographs through sensor design optimization using numerical and laboratory studies
通过数值和实验室研究优化传感器设计来减少宽带海底地震仪的噪声
  • 批准号:
    NE/H00257X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant

相似海外基金

Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
  • 批准号:
    2608627
  • 财政年份:
    2025
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Studentship
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
CAREER: Investigating Biogeographic Hypotheses and Drivers of Diversification in Neotropical Harvestmen (Opiliones: Laniatores) Using Ultraconserved Elements
职业:利用超保守元素研究新热带收获者(Opiliones:Laniatores)多样化的生物地理学假设和驱动因素
  • 批准号:
    2337605
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Continuing Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大​​风暴潮的多尺度动力学过程
  • 批准号:
    2342516
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Hyporheic Zone Reaction Enhancement by Bioclogging Across Scales
合作研究:研究跨尺度生物堵塞增强潜流区反应
  • 批准号:
    2345366
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Continuing Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Fellowship Award
NSF Postdoctoral Fellowship in Biology: Investigating the role of thermal stress response in facilitating adaptation in camel spiders
美国国家科学基金会生物学博士后奖学金:研究热应激反应在促进骆驼蜘蛛适应中的作用
  • 批准号:
    2305969
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Fellowship Award
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
  • 批准号:
    24K16704
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了