RUI: Investigating Spin Currents from Nuclear Field Gradients

RUI:研究核场梯度中的自旋流

基本信息

  • 批准号:
    2152540
  • 负责人:
  • 金额:
    $ 11.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThis award supports research into spin and charge current generation relevant to future "spintronics" technologies, educating wider student populations about the quantum mechanics of spin, and outreach to local communities on issues pertaining to quantum science. Familiar electronics is based on a current of charges. Spintronics works, instead, on a current of magnetic spins, which one can think of as infinitesimal bar magnets. Efficiently generating and measuring spin currents is a condition for many proposed spin-based devices. The research effort will theoretically investigate a mechanism of spin-current generation and measurement that involves non-uniform magnetic fields coming from atomic nuclei embedded in a semiconductor. A further goal of this activity will be to compare figures of merit of this new mechanism to traditional spin-orbit coupling for spin-current generation and detection. Students will take part in all aspects of the project: learning and applying analytic and numerical methods, drafting articles, and presenting results at meetings. The principal investigator (PI) will develop course materials for an introductory class in the quantum mechanics of spin that will be geared toward a wide swath of students: those who have not taken traditional quantum mechanics or even many upper-level physics courses. The curriculum will be designed to be accessible to chemistry and engineering/computer science students in an effort to mainstream quantum mechanical and quantum computing concepts. Quantum technologies are expected to bring about a quantum revolution. The PI will engage the campus and local community in discussions (through public presentations) of quantum science, the directions quantum technology will lead, and the importance of quantum education for the nation.TECHNICAL SUMMARYThis award supports theoretical investigations of spin-current-to-charge-current and charge-current-to-spin-current conversion by means of gradients in nuclear field. The spin-Hall effect and its inverse effect are presently the chief methods by which spin/charge currents are converted. Spin-Hall conversions require materials with strong spin-orbit interactions, which shorten spin diffusion lengths. The research thrust here is to tap into alternative materials for charge/spin current conversion where strong spin-orbit interactions are not necessary or desirable; instead, strong hyperfine interactions are relied upon. Nuclear field or hyperfine gradients offer a mechanism by which either spin or charge current can be generated. Spin separation via this nuclear gradient channel is reminiscent of the Stern-Gerlach effect, but since the nuclear field is not a true magnetic field in the sense of a Lorentz force being operational, spins are able to separate more effectively than they would in a true magnetic field gradient (the nuclear field - at the level of the Fermi contact potential - acts only on the spin and not on the orbital degree of freedom). The project goal is to develop and solve spin and charge drift-diffusion equations with the gradient effect included. Analytic solutions are possible for some configurations but in general the coupled equations are nonlinear and necessitate numerical methods. Furthermore, two possible experimental realizations of the effect will be modeled: electrical spin injection and optical spin injection. In both situations, a nuclear gradient is feasible through non-uniform dynamic nuclear polarization by injected spin polarized carriers. By modeling and evaluating these scenarios, a guide will be provided to experimentalists who wish to observe the spin and charge separating effects. Ultimately, the spin/charge drift diffusion formalism developed will be able to incorporate other types of field gradients as well, namely, spin-orbit fields such as those due to the Rashba interaction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持与未来“自旋电子学”技术相关的自旋和电荷电流生成研究,教育更广泛的学生群体关于自旋的量子力学,并就与量子科学有关的问题与当地社区进行外联。 熟悉的电子学是基于电流的。 相反,自旋电子学是在磁自旋的电流上工作的,人们可以把它看作是无限小的条形磁铁。 有效地产生和测量自旋电流是许多提出的基于自旋的器件的条件。该研究工作将从理论上研究自旋电流产生和测量的机制,该机制涉及嵌入半导体中的原子核产生的非均匀磁场。 这项活动的另一个目标是比较这种新机制与传统的自旋-轨道耦合产生和探测自旋电流的优值。学生将参加项目的各个方面:学习和应用分析和数值方法,起草文章,并在会议上展示结果。 首席研究员(PI)将为自旋量子力学的入门课程开发课程材料,该课程将面向广泛的学生:那些没有参加传统量子力学甚至许多高级物理课程的学生。该课程将被设计为化学和工程/计算机科学的学生可以访问,以努力将量子力学和量子计算概念主流化。 量子技术有望带来一场量子革命。PI将在校园和当地社区参与量子科学的讨论(通过公开演讲),量子技术将引领的方向,以及量子教育对国家的重要性。技术概述该奖项支持通过核领域的梯度进行自旋电流到电荷电流和电荷电流到自旋电流转换的理论研究。自旋霍尔效应及其逆效应是目前自旋/电荷电流转换的主要方法。 自旋霍尔转换需要具有强自旋轨道相互作用的材料,这缩短了自旋扩散长度。这里的研究重点是利用替代材料进行电荷/自旋电流转换,其中强自旋-轨道相互作用是不必要或不可取的;相反,依赖于强超精细相互作用。 核场或超精细梯度提供了一种机制,通过这种机制可以产生自旋或电荷流。通过这种核梯度通道的自旋分离让人想起斯特恩-格拉赫效应,但由于核场不是洛伦兹力作用意义上的真正磁场,因此自旋能够比它们更有效地分离。在真正的磁场梯度中(核场-在费米接触势的水平上-仅作用于自旋而不是轨道自由度)。该项目的目标是发展和解决自旋和电荷漂移扩散方程的梯度效应。解析解是可能的一些配置,但在一般情况下,耦合方程是非线性的,需要数值方法。此外,两种可能的实验实现的效果将建模:电自旋注入和光学自旋注入。在这两种情况下,核梯度是可行的,通过注入自旋极化载流子的非均匀动态核极化。通过模拟和评估这些情况,将提供一个指导实验谁希望观察自旋和电荷分离效果。最终,自旋/电荷漂移扩散形式主义的发展将能够纳入其他类型的场梯度,以及,即,自旋-轨道场,如那些由于Rashba interaction.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Driving a pure spin current from nuclear-polarization gradients
从核极化梯度驱动纯自旋电流
  • DOI:
    10.1103/physrevb.106.054207
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Harmon, N. J.;Flatté, M. E.
  • 通讯作者:
    Flatté, M. E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Harmon其他文献

Bayesian regional moment tensor from ocean bottom seismograms recorded in the Lesser Antilles: Implications for regional stress field
小安的列斯群岛记录的海底地震图的贝叶斯区域矩张量:对区域应力场的影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    M. Lindner;A. Rietbrock;L. Bie;S. Goes;J. Collier;C. Rychert;Nicholas Harmon;S. Hicks;T. Henstock
  • 通讯作者:
    T. Henstock
Earth and Planetary Science Letters Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone
地球与行星科学快报 利用小安的列斯群岛俯冲带的地震速度层析成像对板片输送的流体及其深度脱水进行成像
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Bie;S. Hicks;A. Rietbrock;S. Goes;J. Collier;C. Rychert;Nicholas Harmon;B. Maunder
  • 通讯作者:
    B. Maunder
Elastic Electron Scattering from Be, Mg, and Ca
Be、Mg 和 Ca 的弹性电子散射
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    M. Adibzadeh;C. Theodosiou;Nicholas Harmon
  • 通讯作者:
    Nicholas Harmon
Evolution of the Oceanic Lithosphere in the equatorial Atlantic, evidence for small-scale convection from the PI-LAB experiment
赤道大西洋海洋岩石圈的演化,来自 PI-LAB 实验的小规模对流证据
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Harmon;C. Rychert;J. Kendall;M. Agius;P. Bogiatzis;S. Tharimena
  • 通讯作者:
    S. Tharimena
(2020). Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature, 582(7813), 525-529.
(2020)。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Cooper;Colin G. Macpherson;Jon D. Blundy;B. Maunder;4. RobertW.;Allen;Saskia Goes;Jenny Collier;L. Bie;Nicholas Harmon;S. Hicks;Alexander A. Iveson;J. Prytulak;A. Rietbrock;C. Rychert
  • 通讯作者:
    C. Rychert

Nicholas Harmon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Harmon', 18)}}的其他基金

RUI: Investigating Spin Currents from Nuclear Field Gradients
RUI:研究核场梯度中的自旋流
  • 批准号:
    2014786
  • 财政年份:
    2021
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
How do subduction zones initiate, develop and end: Imaging the Reversal of Subduction in the Solomon Islands
俯冲带如何开始、发展和结束:想象所罗门群岛的俯冲反转
  • 批准号:
    NE/M00788X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant
Reduction of noise on broadband ocean-bottom seismographs through sensor design optimization using numerical and laboratory studies
通过数值和实验室研究优化传感器设计来减少宽带海底地震仪的噪声
  • 批准号:
    NE/H00257X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant

相似海外基金

Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
  • 批准号:
    2608627
  • 财政年份:
    2025
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Studentship
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant
Investigating Dark Matter in Semi-Visible Jets at CERN
欧洲核子研究中心研究半可见喷流中的暗物质
  • 批准号:
    2907986
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Studentship
Investigating liquid-like mineral phases in crowded media
研究拥挤介质中的液态矿物相
  • 批准号:
    EP/Y022653/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
  • 批准号:
    MR/X030776/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant
Investigating the role of complement component 5a in ANCA-associated vasculitis
研究补体成分 5a 在 ANCA 相关血管炎中的作用
  • 批准号:
    MR/Y000854/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Fellowship
Investigating ubiquitination-regulated cell cycle events underpinning malaria transmission
研究泛素化调节的细胞周期事件支撑疟疾传播
  • 批准号:
    MR/Y013174/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Research Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
CAREER: Investigating Biogeographic Hypotheses and Drivers of Diversification in Neotropical Harvestmen (Opiliones: Laniatores) Using Ultraconserved Elements
职业:利用超保守元素研究新热带收获者(Opiliones:Laniatores)多样化的生物地理学假设和驱动因素
  • 批准号:
    2337605
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Continuing Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大​​风暴潮的多尺度动力学过程
  • 批准号:
    2342516
  • 财政年份:
    2024
  • 资助金额:
    $ 11.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了