Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
基本信息
- 批准号:2015382
- 负责人:
- 金额:$ 10.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 21st century, mathematical modeling has emerged as a primary tool for scientific investigation. Scientists construct mathematical and computer models intended to capture the important features of a complex physical phenomenon, and learn more about the phenomenon by exploring what values of any uncertain model parameters lead to model predictions that mimic closely what is observed in nature. Still, at best the models typically cannot capture all of nature's complexity – or, as George Box famously put it, "All models are wrong, but some are useful." This is really a good thing for discovery – often scientists can get new insights and develop deeper understanding by studying precisely why their models fail to match reality. In this research the PIs will develop a new approach to quantifying this "discrepancy" between mathematical models and observations, intended specifically for problems in which the data are numerical counts of events or objects. Examples arise in nearly every scientific field – counts of volcanoes or earthquakes or disease cases; of galaxies or stars or exoplanets; of photons or gamma ray burst pulses or neutrinos. This project will specifically address two classes of problems in astronomy. One class concerns how astronomers can convert raw data measuring light from astrophysical objects (such as stars and galaxies) into estimates of properties of the sources (such as brightness and color) with accurately quantified uncertainties, even when the precise shapes of the objects are not known, and their images overlap. A second class concerns using astronomical survey catalogs to learn the dominant demographic properties of stars, galaxies, or minor planets (such as asteroids), such as the distribution of their luminosities or masses. The NSF-funded Vera Rubin Observatory will produce data for both types of problems. The research will include developing fast, open-sourcecomputational algorithms implementing the new approaches.The project is motivated by application areas in which salient feature discovery is threatened by model misspecification. In applications with real-valued magnitude data with additive Gaussian errors, statisticians have addressed misspecification by introducing additive discrepancy processes into models, often using Gaussian processes. The two problem areas addressed here require analysis of discrete count or point process data: photon counting data comprising images and time series from cosmic sources, or demographic data in astronomical survey catalogs. Both areas rely on Poisson point process models, with an intensity function describing, say, the photon arrival rate (per unit area) as a function of direction and time, or the density of galaxies as a function of spatial location and luminosity. Additive discrepancy models are not applicable to such discrete-data settings. The team will develop new semiparametric methods that supplement parametric salient feature models with nonparametric discrepancy processes that flexibly model the departure of salient models from the true data generating process. An approach serving as a starting point represents the true underlying intensity function as the product of the salient feature model and a stochastic multiplicative discrepancy process. The salient feature model will be a parametricintensity function (e.g., with location, amplitude, scale, and shape parameters), sometimes in a superposition of multiple components (e.g., stars in an image, pulses in a transient burst, or population components). To model discrepancy from the salient model, a natural choice with appealing theoretical properties is a multiplicative gamma discrepancy process; composition with the Poisson point process leads to an overall negative binomial point process for the observations. The team will implement this approach, and generalize it in several directions. For demographic models, the discrepancy models will be embedded in a hierarchical model that accounts for measurement error and selection effects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
进入世纪,数学建模已成为科学研究的主要工具。 科学家构建数学和计算机模型,旨在捕捉复杂物理现象的重要特征,并通过探索任何不确定的模型参数的值导致模型预测,从而密切模仿自然界中观察到的现象,从而更多地了解这种现象。 尽管如此,这些模型充其量也无法捕捉自然界的所有复杂性--或者,正如乔治·博克斯(George Box)的名言所说:“所有模型都是错误的,但有些模型是有用的。“这对发现来说确实是一件好事-通常科学家可以通过研究他们的模型无法与现实相匹配的原因来获得新的见解并加深理解。 在这项研究中,PI将开发一种新的方法来量化数学模型和观测之间的这种“差异”,专门用于数据是事件或对象的数值计数的问题。 几乎在每一个科学领域都有这样的例子--火山、地震或疾病病例的计数;星系、恒星或系外行星的计数;光子或伽马射线爆发脉冲或中微子的计数。 这个项目将专门解决天文学中的两类问题。 一类是关于天文学家如何将测量天体(如恒星和星系)光的原始数据转换为具有精确量化不确定性的源属性(如亮度和颜色)的估计值,即使物体的精确形状未知,它们的图像重叠。 第二类涉及使用天文巡天星表来了解恒星、星系或小行星(如小行星)的主要人口统计特性,如它们的光度或质量分布。NSF资助的Vera Rubin天文台将为这两种类型的问题提供数据。该研究将包括开发快速,开源的计算算法实现新的approaches.The项目是由应用领域的显着特征发现受到模型错误的威胁。 在具有加性高斯误差的实值幅度数据的应用中,统计学家通过将加性差异过程引入模型来解决错误指定,通常使用高斯过程。 这里解决的两个问题领域需要离散计数或点过程数据的分析:光子计数数据,包括图像和时间序列从宇宙源,或人口数据在天文调查目录。 这两个领域都依赖于泊松点过程模型,用强度函数来描述光子到达率(每单位面积)作为方向和时间的函数,或者星系的密度作为空间位置和光度的函数。 加性差异模型不适用于这种离散数据设置。 该团队将开发新的半参数方法,用非参数差异过程补充参数显着特征模型,灵活地模拟显着模型与真实数据生成过程的偏离。 作为一个起点的方法表示的显着特征模型和随机乘法差异过程的产品的真实的潜在强度函数。 显著特征模型将是参数强度函数(例如,具有位置、幅度、比例和形状参数),有时是多个分量的叠加(例如,图像中的恒星、瞬时爆发中的脉冲、或人口成分)。为了对显着模型的差异进行建模,具有吸引人的理论性质的自然选择是乘法伽马差异过程;与泊松点过程的组合导致观察结果的总体负二项点过程。 该团队将实现这种方法,并将其推广到几个方向。对于人口统计模型,差异模型将被嵌入到一个层次模型中,该模型考虑了测量误差和选择效应。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Wolpert其他文献
Robert Wolpert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Wolpert', 18)}}的其他基金
Collaborative Research: Using Precursor Information to Update Probabilistic Hazard Maps
协作研究:使用前体信息更新概率危险图
- 批准号:
1821289 - 财政年份:2018
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Statistical Surrogates for Linking Multiple Computer Models with Disparate Data for Quantifying Uncertain Hazards
合作研究:推进统计替代方法,将多个计算机模型与不同数据联系起来,以量化不确定的危害
- 批准号:
1622403 - 财政年份:2016
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: Statistical and Computational Models and Methods for Extracting Knowledge from Massive Disparate Data for Quantifying Uncertain Hazards
合作研究:从海量不同数据中提取知识以量化不确定危害的统计和计算模型及方法
- 批准号:
1228317 - 财政年份:2012
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Prediction and Risk of Extreme Events Utilizing Mathematical Computer Models of Geophysical Processes
FRG:协作研究:利用地球物理过程的数学计算机模型预测极端事件和风险
- 批准号:
0757549 - 财政年份:2008
- 资助金额:
$ 10.42万 - 项目类别:
Continuing Grant
Sixth World Meeting of the International Society for Bayesian Analysis
国际贝叶斯分析学会第六届世界会议
- 批准号:
0075302 - 财政年份:2000
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9707914 - 财政年份:1997
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Spatial and Spatial-temporal Bayesian Point Process Models for Bioabudance and Other Applications
用于生物丰度和其他应用的空间和时空贝叶斯点过程模型
- 批准号:
9626829 - 财政年份:1996
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Expert Systems for Parameter Estimation in Pollutant Transport-and-Fate Modeling
污染物迁移和归宿建模中参数估计的专家系统
- 批准号:
8921227 - 财政年份:1990
- 资助金额:
$ 10.42万 - 项目类别:
Continuing Grant
Markoff Transition Systems For Multiparameter Processes
多参数过程的马尔可夫转移系统
- 批准号:
7801737 - 财政年份:1978
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306831 - 财政年份:2023
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306830 - 财政年份:2023
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: Data Assimilation for Turbulent Flows: Dynamic Model Learning and Solution Capturing
协作研究:湍流数据同化:动态模型学习和解决方案捕获
- 批准号:
2206762 - 财政年份:2022
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Capturing the Elgin-Lugoff earthquake swarm with a dense nodal array
合作研究:RAPID:用密集节点阵列捕捉埃尔金-卢戈夫地震群
- 批准号:
2303139 - 财政年份:2022
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: Data Assimilation for Turbulent Flows: Dynamic Model Learning and Solution Capturing
协作研究:湍流数据同化:动态模型学习和解决方案捕获
- 批准号:
2206741 - 财政年份:2022
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Capturing the Elgin-Lugoff earthquake swarm with a dense nodal array
合作研究:RAPID:用密集节点阵列捕捉埃尔金-卢戈夫地震群
- 批准号:
2303140 - 财政年份:2022
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: Capturing 4D Variations in Stress, Slip, and Fault-Zone Material Properties: The 2019-2021 Gofar Transform Fault Earthquake Prediction Experiment
合作研究:捕捉应力、滑移和断层带材料特性的 4D 变化:2019-2021 年 Gofar 变换断层地震预测实验
- 批准号:
2128784 - 财政年份:2021
- 资助金额:
$ 10.42万 - 项目类别:
Continuing Grant
Collaborative Research: NNA Research: Capturing Indigenous Knowledge to Co-Design more Effective Operations, Maintenance and Management of Water Infrastructure
合作研究:NNA 研究:获取本土知识,共同设计更有效的水基础设施运营、维护和管理
- 批准号:
2127353 - 财政年份:2021
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Capturing Indigenous Knowledge to Co-Design more Effective Operations, Maintenance and Management of Water Infrastructure
合作研究:NNA 研究:获取本土知识,共同设计更有效的水基础设施运营、维护和管理
- 批准号:
2127354 - 财政年份:2021
- 资助金额:
$ 10.42万 - 项目类别:
Standard Grant
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
- 批准号:
2015386 - 财政年份:2020
- 资助金额:
$ 10.42万 - 项目类别:
Continuing Grant