Correlated Graphical Models for High-Dimensional Heterogeneous Data: Theory, Optimization, and Applications
高维异构数据的相关图形模型:理论、优化和应用
基本信息
- 批准号:2015481
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is motivated by the pressing need for analyzing modern high-dimensional heterogeneous data from multiple sources. Driven by high-throughput biotechnologies, it is increasingly common to have multiple types of measurements on the same set of subjects. Integration of heterogeneous data types is the key to gaining fundamental knowledge on biological processes. Complex characteristics of modern biological data also result in challenges for data analysis and statistical modeling. This project will contribute to theoretical and methodological development through novel graphical models suitable for fusing correlated and mixed data from static and dynamic conditions. These approaches have great potential to translate rich data into meaningful knowledge. The new statistical methods and theories will also advance modern statistical science. The resulting products of this project will provide valuable software tools to scientific communities. This research will promote curriculum development, student training, and educational outreach.Multimodal data from different experimental platforms have different properties and characteristics. In many systems, including biological processes, regulation is modularized and temporally dynamic in nature. Common regulatory principles exist in certain related biological conditions. This project will focus on the development of new data integration methods and theories through novel correlated graphical models from a frequentist inference perspective. The methods will be based on exponential Markov random fields beyond the traditional Gaussian assumption. The new methods will allow for network discovery for high-dimensional heterogeneous data from multiple static and dynamic conditions. This project also involves the development of efficient algorithms for complex optimization problems incorporating the structure-inducing regularization mechanism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的动机是分析来自多个来源的现代高维异构数据的迫切需要。在高通量生物技术的推动下,对同一组受试者进行多种类型的测量变得越来越普遍。异构数据类型的集成是获得生物过程基础知识的关键。现代生物数据的复杂特征也给数据分析和统计建模带来了挑战。该项目将通过适合融合静态和动态条件下的相关数据和混合数据的新型图形模型,为理论和方法的发展做出贡献。这些方法具有将丰富的数据转化为有意义的知识的巨大潜力。新的统计方法和理论也将推动现代统计科学的发展。该项目的最终产品将为科学界提供有价值的软件工具。这项研究将促进课程开发、学生培训和教育推广。来自不同实验平台的多模态数据具有不同的属性和特征。在许多系统中,包括生物过程,调节本质上是模块化的和时间动态的。某些相关的生物条件中存在共同的监管原则。该项目将重点从频率推理的角度通过新颖的相关图形模型开发新的数据集成方法和理论。这些方法将基于超越传统高斯假设的指数马尔可夫随机场。新方法将允许从多个静态和动态条件下发现高维异构数据的网络。该项目还涉及开发针对复杂优化问题的有效算法,并结合结构诱导正则化机制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Variational Inference for Joint Mixed Sparse Graphical Models
联合混合稀疏图形模型的快速变分推理
- DOI:10.1109/jsait.2020.3042124
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Liu, Qingyang;Zhang, Yuping
- 通讯作者:Zhang, Yuping
Integrative Structural Learning of Mixed Graphical Models via Pseudo-likelihood
通过伪似然的混合图模型的综合结构学习
- DOI:10.1007/s12561-023-09367-9
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Liu, Qingyang;Zhang, Yuping
- 通讯作者:Zhang, Yuping
Structural inference of time‐varying mixed graphical models
时变混合图模型的结构推理
- DOI:10.1002/sta4.414
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Liu, Q.;Zhang, Y.;Ouyang, Z.
- 通讯作者:Ouyang, Z.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuping Zhang其他文献
Accelerating Biological Sequence Alignment Algorithm on GPU with CUDA
使用 CUDA 在 GPU 上加速生物序列比对算法
- DOI:
10.1109/iccis.2011.61 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Fang Zheng;Xianbin Xu;Yuanhua Yang;Shuibing He;Yuping Zhang - 通讯作者:
Yuping Zhang
Gain characteristics of THz surface plasmons in electrically pumped monolayer graphene
电泵浦单层石墨烯中太赫兹表面等离子体的增益特性
- DOI:
10.1051/epjap/2014140425 - 发表时间:
2015 - 期刊:
- 影响因子:1
- 作者:
Yuping Zhang;Ya;Yanyan Cao;Huan;Tongtong Li;Xiao;Huiyun Zhang;G. Ren - 通讯作者:
G. Ren
Gain enhancement of terahertz surface plasmon in electrically pumped multilayer graphene
电泵多层石墨烯中太赫兹表面等离子体的增益增强
- DOI:
10.1007/s11801-015-4201-4 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
Yuping Zhang;Ya;Yanyan Cao;Tongtong Li;Huan;Xiao;G. Ren;Huiyun Zhang - 通讯作者:
Huiyun Zhang
Accumulation, metabolites formation and elimination behavior of rac-glufosinate-ammonium and glufosinate-P in zebrafish (Danio rerio).
外消旋草铵膦和草铵膦在斑马鱼(斑马鱼)中的积累、代谢物形成和消除行为
- DOI:
10.1016/j.fochx.2022.100383 - 发表时间:
2022-10-30 - 期刊:
- 影响因子:6.1
- 作者:
Fei Wang;Qiao Lin;Xueqin Shi;Yunfang Li;Pengyu Deng;Yuping Zhang;Deyu Hu - 通讯作者:
Deyu Hu
Furanoeremophilanes from Ligularia atroviolacea.
Furanoeremophilanes,来自黑橐吾。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3.4
- 作者:
S. Shi;Yu Zhao;Yuping Zhang;Ke‐long Huang - 通讯作者:
Ke‐long Huang
Yuping Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Visualization of causality: development and application of graphical models based on mechanisms
因果关系可视化:基于机制的图模型的开发与应用
- 批准号:
23K09740 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CBMS Conference: Foundations of Causal Graphical Models and Structure Discovery
CBMS 会议:因果图模型和结构发现的基础
- 批准号:
2227849 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Personalization of graphical models using multi-omics data for subtype discovery and prognosis
使用多组学数据个性化图形模型以进行亚型发现和预后
- 批准号:
10743786 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10366570 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
- 批准号:
2210675 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Graphical causal models for random networks
随机网络的图形因果模型
- 批准号:
EP/W015684/1 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10549831 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:














{{item.name}}会员




