Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
基本信息
- 批准号:RGPIN-2019-05941
- 负责人:
- 金额:$ 4.52万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite a tremendous increase in the performance of mixed integer programming (MIP) and constraint programming (CP) solvers during the past few decades, many discrete decision problems in supply chain and healthcare logistics (SCHL) remain challenging. The focus of this research program will be on the development of graphical optimization models (GOMs) to yield faster solutions for discrete decision problems in SCHL. The term "graphical model" traditionally refers to a probabilistic graphical model that expresses the conditional dependence structure between random variables. However, in the context of discrete optimization, we use the term GOM to represent a broad class of graph-based models that describe a system with states and action variables and a set of linking equations. In the literature, such GOMs are used to build dynamic programs (DP), MIP formulations with network flow components, decomposition approaches that rely on column or row generation, and global constraints in CP. The main advantage of GOMs is their increased precision in representing discrete decisions compared to methods that rely solely on continuous (linear or nonlinear) relaxations. These models, which require considerable memory to build and manipulate, are becoming increasingly useful as the availability and cost of memory improve. In this proposal, we will focus on GOMs derived from hypergraphs (HG) and decision diagrams (DDs), which have been successfully used in the context of optimization. The four main objectives of my research program are to use GOMs: 1) to build a new generation of discrete solvers; 2) to better model uncertainty in SCHL problems; 3) to support deep reinforcement learning (DRL) for combinatorial optimization; and 4) to solve industrial SCHL problems in real time. We aim to have both a methodological and a practical impact. The research will a) provide our Canadian startup partners with new tools that will allow them to compete and succeed on a global scale, and b) help our Canadian public service and healthcare partners to be more efficient in caring for the population. The 12 highly qualified personnel (HQP) that will be trained by this program are expected to join academia or industry as scientists or domain experts.
尽管在过去的几十年中,混合整数规划(MIP)和约束规划(CP)求解器的性能有了很大的提高,但供应链和医疗物流(SCHL)中的许多离散决策问题仍然具有挑战性。本研究计划的重点将是图形优化模型(GOM)的发展,以产生更快的解决方案,在SCHL离散决策问题。 “图模型”一词传统上是指概率图模型,它表达了随机变量之间的条件依赖结构。然而,在离散优化的上下文中,我们使用术语GOM来表示一类广泛的基于图的模型,这些模型描述了具有状态和动作变量以及一组链接方程的系统。在文献中,这样的GOM被用来建立动态程序(DP),MIP配方与网络流组件,分解方法,依赖于列或行生成,和CP中的全局约束。 GOM的主要优点是,与仅依赖于连续(线性或非线性)松弛的方法相比,它们在表示离散决策时的精度有所提高。这些模型需要大量的内存来构建和操作,随着内存可用性和成本的提高,它们变得越来越有用。在本提案中,我们将重点关注来自超图(HG)和决策图(DD)的GOM,它们已成功地用于优化。 我的研究计划的四个主要目标是使用GOM:1)构建新一代离散求解器; 2)更好地建模SCHL问题中的不确定性; 3)支持深度强化学习(DRL)进行组合优化; 4)真实的时间解决工业SCHL问题。 我们的目标是在方法上和实际上产生影响。这项研究将a)为我们的加拿大创业合作伙伴提供新的工具,使他们能够在全球范围内竞争并取得成功,B)帮助我们的加拿大公共服务和医疗保健合作伙伴更有效地照顾人口。该计划将培训12名高素质人员(HQP),预计将作为科学家或领域专家加入学术界或工业界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rousseau, LouisMartin其他文献
Rousseau, LouisMartin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rousseau, LouisMartin', 18)}}的其他基金
analytique et logistique des soins de santé
圣诞老人之家的分析与逻辑
- 批准号:
CRC-2015-00178 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Canada Research Chairs
analytique et logistique des soins de santé
圣诞老人之家的分析与逻辑
- 批准号:
CRC-2021-00556 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Canada Research Chairs
Analytique Et Logistique Des Soins De Santé
桑特之家分析与物流
- 批准号:
CRC-2015-00178 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Canada Research Chairs
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
analytique et logistique des soins de santé
圣诞老人之家的分析与逻辑
- 批准号:
CRC-2015-00178 - 财政年份:2020
- 资助金额:
$ 4.52万 - 项目类别:
Canada Research Chairs
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2020
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2019
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
analytique et logistique des soins de santé
圣诞老人之家的分析与逻辑
- 批准号:
CRC-2015-00178 - 财政年份:2019
- 资助金额:
$ 4.52万 - 项目类别:
Canada Research Chairs
analytique et logistique des soins de santé
圣诞老人之家的分析与逻辑
- 批准号:
CRC-2015-00178 - 财政年份:2018
- 资助金额:
$ 4.52万 - 项目类别:
Canada Research Chairs
Constraint Programming Approaches to Integrated Scheduling and Transportation Problems
综合调度和运输问题的约束规划方法
- 批准号:
RGPIN-2014-03968 - 财政年份:2018
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2020
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Correlated Graphical Models for High-Dimensional Heterogeneous Data: Theory, Optimization, and Applications
高维异构数据的相关图形模型:理论、优化和应用
- 批准号:
2015481 - 财政年份:2020
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2019
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Online Dynamic Graphical Game Approach for Pursuing Illegal Fishing Vessels with Running Energy Optimization**
通过运行能量优化追捕非法渔船的在线动态图形游戏方法**
- 批准号:
537568-2018 - 财政年份:2018
- 资助金额:
$ 4.52万 - 项目类别:
Engage Grants Program
Graphical user interface optimization for complex structured data display
针对复杂结构化数据显示的图形用户界面优化
- 批准号:
508666-2017 - 财政年份:2017
- 资助金额:
$ 4.52万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Graphical user interface optimization for complex structured data display
针对复杂结构化数据显示的图形用户界面优化
- 批准号:
513748-2017 - 财政年份:2017
- 资助金额:
$ 4.52万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Convex optimization methods for system identification and graphical modeling of time series
系统辨识和时间序列图形建模的凸优化方法
- 批准号:
1128817 - 财政年份:2011
- 资助金额:
$ 4.52万 - 项目类别:
Continuing Grant
Statistical Physics Methods and Algorithmic Applications in Graphical Games and Combinatorial Optimization
统计物理方法和算法在图形游戏和组合优化中的应用
- 批准号:
1031332 - 财政年份:2010
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Stratigraphic Correlation as Constrained Optimization: Extending Graphical Correlation to N Dimensions
协作研究:地层相关性作为约束优化:将图形相关性扩展到 N 维
- 批准号:
9219764 - 财政年份:1993
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant