Correlating Nonlinear Wave Response with Mesoscale Dislocation-Based Damage to Understand Fatigue Evolution

将非线性波响应与中尺度位错损伤相关联以了解疲劳演化

基本信息

项目摘要

Fatigue damage causes nano- and micro-structural changes in metals that ultimately cause structures to fail. While materials characterization techniques can classify this damage at very small scales, measuring such changes while damage is occurring and in large-scale samples remains a challenge. This award supports fundamental research to address these challenges by studying how nonlinear high-frequency waves propagate in metals undergoing fatigue damage. This knowledge will not only improve our understanding of how damage such as fatigue evolves, it will also provide important insight into how high-frequency waves propagate in metals. Because many structures and materials undergo fatigue, it will benefit society by improving the safety and efficiency of structures, such as those used in airframes, transportation systems, and energy infrastructure. This award will also support student education in critical engineering skills at multiple levels, through an integrated K-12 outreach program that incorporates a project-based undergraduate course and graduate student mentors.The objective of this project is to determine the relationship between nonlinear high-frequency wave propagation and dislocation-based damage at the mesoscale. To do this, nonlinear wave measurement techniques and models will be integrated with digital image correlation, electron backscatter diffraction, and scanning electron microscopy, to characterize cyclic loading of polycrystalline FCC material. Spatial variations in dislocation-based damage will be captured and correlated with nonlinear high-frequency wave measurements and used to predict fatigue damage. A new constitutive relationship will be introduced relating the acoustic nonlinearity parameter measured by ultrasound and accumulated strain that captures dislocation-based damage at the mesoscale measured with digital image correlation. Finally, nonlinear ultrasound will be used to spatially characterize dislocation parameters throughout the fatigue life of samples, and then used to validate or update micromechanical models for fatigue evolution in polycrystalline metal. This fundamental knowledge will uncover how dislocation-based damage manifests at the mesoscale, how this relates to fatigue evolution, as well as how nonlinear high-frequency waves propagate through spatially heterogeneous nonlinear elastic media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
疲劳损伤导致金属的纳米和微观结构变化,最终导致结构失效。虽然材料表征技术可以在非常小的尺度上对这种损伤进行分类,但在损伤发生时和大规模样品中测量这种变化仍然是一个挑战。该奖项支持基础研究,通过研究非线性高频波如何在经历疲劳损伤的金属中传播来应对这些挑战。这些知识不仅将提高我们对疲劳等损伤如何演变的理解,还将为高频波如何在金属中传播提供重要的见解。由于许多结构和材料都会经历疲劳,因此它将通过提高结构的安全性和效率来造福社会,例如用于机身,运输系统和能源基础设施的结构。该奖项还将通过一个综合的K-12外展计划支持学生在多个层面上的关键工程技能教育,该计划包括基于项目的本科课程和研究生导师。该项目的目标是确定非线性高频波传播和中尺度位错损伤之间的关系。为此,将非线性波测量技术和模型与数字图像相关、电子背散射衍射和扫描电子显微镜相结合,以表征多晶FCC材料的循环加载。基于位错的损伤的空间变化将被捕获,并与非线性高频波测量相关,并用于预测疲劳损伤。将引入一种新的本构关系,将超声测量的声学非线性参数与用数字图像相关测量的中尺度处的累积应变相关联,该累积应变捕获基于位错的损伤。 最后,非线性超声将被用来在空间上表征整个样品的疲劳寿命的位错参数,然后用于验证或更新多晶金属疲劳演化的微观力学模型。这一基础知识将揭示位错损伤如何在中尺度上表现出来,如何与疲劳演化相关,以及非线性高频波如何通过空间异质非线性弹性介质传播。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathryn Matlack其他文献

Kathryn Matlack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathryn Matlack', 18)}}的其他基金

CAREER: Controlling Nonlinear Wave Propagation in Metastructures with Contact Interfaces
职业:通过接触界面控制超结构中的非线性波传播
  • 批准号:
    2047041
  • 财政年份:
    2021
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Standard Grant
Redefining Geometric Periodicity to Enable New Wave Responses in Radial Phononic Materials
重新定义几何周期性以实现径向声子材料中的新波响应
  • 批准号:
    2031110
  • 财政年份:
    2020
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    2306290
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Continuing Grant
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear spectrometer for collinear four-wave mixing
共线四波混频非线性光谱仪
  • 批准号:
    517518222
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Major Research Instrumentation
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Standard Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Standard Grant
Nonlinear Wave Interactions
非线性波相互作用
  • 批准号:
    2306319
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Continuing Grant
Development of a signal amplification technique using nonlinear optical effects for next-generation gravitational wave detectors
开发利用非线性光学效应的下一代引力波探测器的信号放大技术
  • 批准号:
    23KJ0954
  • 财政年份:
    2023
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nonlinear Wave Models in Domains with a Boundary
有边界域中的非线性波模型
  • 批准号:
    2206270
  • 财政年份:
    2022
  • 资助金额:
    $ 45.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了